Workflow
表征学习
icon
搜索文档
何恺明改进了谢赛宁的REPA:极大简化但性能依旧强悍
机器之心· 2025-06-12 17:57
扩散生成模型与表征学习 - 扩散生成模型在建模复杂数据分布方面表现出色,但与表征学习领域关联不大[2] - 扩散模型训练目标包含重构回归项,但缺乏为生成学习表征的显式正则化项,与图像识别领域以表征学习为核心的范式差异明显[3] - 自监督学习中对比学习通过样本对学习表征,已有效解决分类、检测等识别任务,但尚未在生成模型中探索应用[4][5] REPA方法的局限性 - 谢赛宁团队提出表征对齐(REPA)方法,利用预训练表征模型能力实现生成模型内部表征与外部预训练表征对齐[6] - REPA依赖额外预训练、额外模型参数和外部数据访问,操作复杂且不够独立极简[7][8] 分散损失(Dispersive Loss)创新 - MIT团队提出分散损失作为即插即用正则化器,将自监督学习集成到扩散生成模型,无需预训练、额外参数或外部数据[9][10] - 分散损失核心思想是在标准回归损失外增加正则化内部表征的目标,鼓励隐藏空间表征分散[10][13] - 该方法行为类似"没有正例对的对比损失",无需双视图采样、数据增强或额外编码器,仅需增加可忽略计算开销的正则化损失[13] 分散损失技术实现 - 目标函数由标准扩散损失L_Diff和批次依赖的分散损失L_Disp组成,加权系数λ控制正则化强度[14] - 直接应用于中间表示层,不增加额外可学习参数或修改原始L_Diff实现[15][16] - 通过适当移除正例项可从现有对比损失推导分散损失,形成鼓励表征分散的通用目标类别[18] 分散损失变体与性能 - 开发基于InfoNCE、Hinge和Covariance的三种分散损失变体,均比对应对比损失更简洁[19][24][26] - 实验显示采用ℓ₂距离的InfoNCE变体表现最佳,使FID分数降低11.35%[31][34] - 在DiT和SiT模型上分散损失均优于基线,对更强模型改进更显著,验证其正则化作用[36][37] 方法优势与应用 - 相比REPA无需DINOv2等预训练模型(11B参数/1.42亿图像训练),实现完全独立[41][42][43] - 可泛化应用于一步式扩散模型,在MeanFlow上实现持续改进并达到SOTA性能[44][45]
2025年中国多模态大模型行业核心技术现状 关键在表征、翻译、对齐、融合、协同技术【组图】
前瞻网· 2025-06-03 13:12
多模态大模型核心技术-表征 - 表征学习是多模态任务的基础,涉及处理异质数据结合、不同噪声等级处理及模态缺失问题 [1] - Transformer出现前,CV领域主要使用CNN,NLP领域主要使用LSTM,多模态工作多采用异质网络单独提取特征后联合训练 [1] - Transformer统一多模态任务成为可能,2019年后基于Transformer的多模态预训练模型大量涌现 [1] 多模态大模型核心技术-翻译 - 跨模态翻译旨在将源模态映射到目标模态,如图像生成描述或文本生成图像 [2] - 基于语法模板的方法通过预设模板插入检测结果完成翻译,如图像描述中的who/what/whom/place插槽 [2] - 编码-解码器结构将源模态编码为隐特征后解码生成目标模态,如图像描述中CNN+RNN组合 [2] - 连续性生成针对时间严格对齐的流数据任务,如文本合成语音采用CNN并行预测+CTC loss [3] 多模态大模型核心技术-对齐 - 对齐用于发现不同模态子元素间关联性,如visual grounding任务 [7] - 显式对齐通过动态时间扭曲(DTW)、CCA等方法衡量相似性,深度学习方法逐渐流行 [7] - 隐式对齐通过注意力机制等解决潜在表示问题,降低对编码器的要求 [8] - 当前多模态对齐处于初期阶段,侧重人类指令对齐但忽略高层次价值整合 [8] 多模态大模型核心技术-融合 - 融合通过结合多模态数据增强性能,应用领域包括语音识别、情感识别和医学图像分析 [11] - 早期融合在特征层面合并模态,晚期融合在决策层面结合结果,混合融合综合两者优势 [11] - 神经网络成为主流融合方式,但图形模型和多核学习在数据有限或需可解释性时仍适用 [12] 多模态大模型核心技术-协同 - 协同学习利用一种模态数据训练另一种模态模型,分为并行、非并行和混合三类 [14] - 并行学习要求模态数据直接关联(如音视频同源),非并行学习通过类别重叠实现 [14][15] - 混合协同通过共享模态连接数据,已在视觉分类、动作识别和语义相似度估计中应用 [15]