Workflow
医疗AI 必须以“人机对齐”为前提
经济网·2025-04-30 10:21

AI伦理治理体系化推进 - 我国提出《全球人工智能治理倡议》并出台《科技伦理审查办法(试行)》,工信部正在研究编制人工智能科技伦理服务管理办法,标志着AI伦理治理进入体系化推进阶段 [2] - 医疗AI需要解决人机对齐问题才能成为可信赖的医疗助手 [2] 人机对齐技术 - 人机对齐是通过技术手段与伦理框架让AI的目标、行为和输出与人类价值观、社会规范一致,是"技术人性化"的准入要求 [3] - 人机对齐在医疗领域有三大核心作用:可解释性、信任性和人类和谐性 [4][5] - 人机对齐技术如RLHF、RAG已被主流模型采用,RLAIF方法可解决人类专家标注耗时长的问题 [6] 医疗AI特殊性 - 医疗AI具有数据敏感性、结果不可逆性和责任主体复杂性三大特殊性 [7] - 医疗数据包含敏感信息,受GDPR、HIPAA和《个人信息保护法》等法规严格保护 [7] - 医疗AI必须追求"零失误",需清晰界定责任主体 [7] 医疗AI伦理合规措施 - 应从技术架构、数据集建设、医院管理、患者知情和行业监管五大环节协同发力 [7] - 技术架构环节需在预训练阶段引入"医学伦理知识图谱",微调阶段通过人工反馈强化学习 [7][9] - 数据集建设环节需运用隐私计算技术实现数据"可用不可见",设立"数据过滤器"屏蔽不良数据源 [9] - 医院管理环节需实施"双保险机制",高风险场景AI建议需医生实时复核 [9] - 患者知情环节需提供"可理解的AI决策报告",保障患者否决权 [9] - 行业监管环节需建立国家统一的医疗AI对齐认证标准体系,开展"红蓝对抗演练"等测试 [10] 数据飞轮机制 - "数据飞轮"是用户对AI输出进行标注反馈从而实现模型持续优化的闭环机制 [11] - 医疗AI应建立"数据飞轮"机制,形成"模型输出评估—数据收集—应用反馈—模型优化"闭环 [11] - 需建立准入机制确保数据干净合规,激励机制让数据共享双向受益 [12]