建模市场与人机共振:李天成超越价格预测的认知框架
搜狐网·2025-06-30 18:40
市场认知框架 - 市场不可被精确预测,目标是构建理解市场状态和短期演化方向的认知框架 [1] - 交易本质是在非平稳、高噪音随机过程中寻找期望收益为正的决策机会 [1] - 传统技术分析存在降维失真问题,忽略驱动价格的高维潜在空间 [1] 模型范式演进 - CNN可识别局部空间模式但缺乏对时间序列路径依赖的理解 [2] - LSTM能捕捉时序信息但假设信息沿单一时间线流动,与市场网络化结构矛盾 [3] - 需从序列依赖建模转向结构与时间联合依赖建模 [5] 市场关系拓扑计算 - 构建动态多关系类型的时态知识图谱,数学本质为高阶张量 [6] - 引入异构霍克斯过程建模事件流,量化历史事件对当前事件的增强效应 [6] - 通过最大化对数似然函数反解实体和关系类型的嵌入向量 [7] 人机共振机制 - 人类策略师角色是模型架构的先验设定者,提供对市场的认知和洞察 [9] - 先验概率来自对产业变迁和技术范式转移的理解,转化为模型因子权重 [10] - 决策框架追求数学期望长期为正,赚取认知系统与市场平均认知水平的差价 [11]