Workflow
破解算力资源利用难题,华为联合三大高校发布并开源AI容器技术
观察者网·2025-11-24 10:05

华为数据存储产品线总裁周跃峰 针对大量通用服务器因缺乏智能计算单元而无法服务于AI工作负载的问题,华为与厦门大学联合研发跨节点拉远虚拟化技术。该技术将集群内各节点的空 闲XPU算力聚合形成"共享算力池",一方面为高算力需求的AI工作负载提供充足资源支撑;另一方面,可让不具备智能计算能力的通用服务器通过高速网 络,将AI工作负载转发到远端"资源池"中的GPU/NPU算力卡中执行,从而促进通用算力与智能算力资源融合。 当前,AI产业高速发展催生海量算力需求,但全球算力资源利用率偏低的问题日益凸显,"算力资源浪费"成为产业发展的关键桎梏:小模型任务独占整卡导 致资源闲置,大模型任务单机算力不足难以支撑,大量缺乏GPU/NPU的通用服务器更是处于算力"休眠"状态,供需错配造成严重的资源浪费。 面对算力集群中多品牌、多规格异构算力资源难以统一调度的痛点,华为与西安交通大学共同打造Hi Scheduler智能调度器。该调度器可自动感知集群负载 与资源状态,结合AI工作负载的优先级、算力需求等多维参数,对本地及远端的虚拟化GPU、NPU资源进行全局最优调度,实现AI工作负载分时复用资 源。即便在负载频繁波动的场景下,也能保 ...