政策目标与行业现状 - 国家五部门发布《关于促进和规范“人工智能+医疗卫生”应用发展的实施意见》,提出到2030年基层诊疗智能辅助应用基本实现全覆盖,二级以上医院普遍开展医学影像智能辅助诊断等应用 [2] - 医疗影像因数据结构标准化,是AI技术在各行业中最早实现规模化落地的场景之一,目前头部三甲医院几乎都引入了AI医疗影像产品 [3] - 中国影像科医师严重短缺,三级医院每位影像科医生日均需出具80-100份CT报告、60-80份磁共振报告或120-150个超声检查,超负荷工作现象普遍 [4] AI医疗影像的已实现价值 - AI辅助可将传统耗时近30分钟的诊断流程缩短至5-10分钟,显著提升医生工作效率 [5] - AI在影像检查中识别准确率普遍高达95%以上,在放疗计划制定中可将几小时的工作压缩至几分钟 [5] - 全国三级医院约有14万名影像科医生,平均工资约19万元,保守假设AI能为其节约一半工作时间,理论上每年可创造高达130多亿元的价值 [6] 行业商业化困境与原因 - 2020年至2024年整个AI医疗影像行业的累计商业收入不足30亿元,平均每家医院终身使用一款产品仅需40万元,多为一次性软件买断模式 [7] - 行业同质化竞争激烈,截至2025年已有100余款AI医疗影像产品获批三类医疗器械注册证,单胸肺场景就有十余家企业竞争 [8] - 激烈竞争导致厂商普遍采用“免费试用”策略,陷入囚徒困境,且医院经费有限,许多三乙和二级医院全年检查收入在百万量级,难以负担非刚需的软件费用 [8][9] - 以鹰瞳科技为例,2024年全年收入1.5亿元,销售费用占近一半,全年亏损2.6亿元,大部分非头部企业年收入仅在千万元量级 [9] 技术发展潜力与方向 - 当前AI主要提供辅助诊断价值,在“判断疾病良恶性质”上误诊率高于优秀人类医生,能力上限暂时只能作为医生的提效助手 [10] - 当前主流商业化模型以卷积神经网络(CNN)为主,其缺乏全局视野,对三维影像理解能力较弱 [11] - 引入Transformer架构有望弥补CNN短板,其自注意力机制擅长全局和长距离依赖分析,能让AI从“辅助诊断”向“独立诊断”更进一步 [11] - Transformer的多模态能力为构建覆盖筛查、诊断、治疗到随访全流程的综合性临床诊疗大模型铺平了道路 [12] 未来发展面临的核心挑战:数据 - 基于Transformer的模型需要百万到千万级的图像数据,微调也需要十万到百万级的标注数据,比当前主流商用模型训练规模大几个数量级 [16] - 医疗数据受严格法规保护,共享流通受限,且不同设备、协议及医生标注差异导致数据混乱,获取大规模高质量标注数据困难 [16] - 多模态数据融合要求收集和处理影像、病理、临床、基因等多维度数据,并将不同来源、时间的数据精确对齐,工程浩大 [17] - 能够在医疗数据的收集、治理、标准化、标注、隐私保护和高效利用方面建立核心能力的企业,将有望构建最深护城河 [17] - 可通过自监督学习、联邦学习、合成数据等技术途径缓解数据挑战,但更需要设计有效的协调机制让数据流动起来 [17]
AI医疗影像:在数据“围城”中如何突围
经济观察网·2025-12-08 15:06