Workflow
2025 State of AI Report: The Builder’s Playbook
2025-06-30 10:00

报告核心观点 - 构建和运营人工智能产品是新的竞争优势前沿,2025年报告聚焦如何将生成式智能转化为可靠的创收资产,从产品路线图、上市策略、人才、成本管理和内部生产力等维度展开分析 [11][12] 报告行业投资评级 - 文档未提及相关内容 根据目录总结 构建生成式人工智能产品 - 产品阶段:AI原生公司产品发展更成熟,约47%产品达关键规模并证明市场契合度,而AI赋能公司仍有11%处于预发布阶段 [28][30] - 产品类型:代理工作流和应用层是常见产品类型,约80%AI原生公司正在构建代理工作流 [33] - 模型使用:多数公司依赖第三方AI API,高增长公司更多微调现有基础模型或开发专有模型,后期公司(收入超1亿美元)因资源和定制需求更倾向此做法 [36][37] - 模型选择:面向客户用例选基础模型时,公司优先考虑模型准确性;今年成本考量上升,反映模型层商品化趋势 [39][40] - 模型提供商:OpenAI的GPT模型最受欢迎,但公司越来越多地采用多模型方法,根据用例、性能、成本和客户需求选择不同提供商和模型 [42][46] - 模型训练技术:检索增强生成(RAG)和微调是常见训练技术,高增长公司倾向使用更多基于提示的技术 [49] - 人工智能基础设施:多数公司使用基于云的解决方案和AI API提供商进行训练和推理,以降低前期资本支出和运营复杂性,但也使供应商选择、SLA协商和成本管理成为战略重点 [52][53] - 模型部署挑战:公司部署模型时面临的主要挑战包括幻觉、可解释性/信任和证明投资回报率 [55] - 人工智能性能监控:随着AI产品规模扩大,性能监控变得更重要,许多规模化AI产品提供某种高级性能监控 [58] - 代理工作流:大量公司正在评估代理工作流,高增长AI公司更积极地在生产中部署AI代理 [61] 上市策略与合规 - 人工智能产品路线图:AI赋能公司约20 - 35%的产品路线图专注于AI驱动功能,高增长公司这一比例接近30 - 45% [66] - 定价模型:许多公司采用混合定价模型,包括基于订阅/计划的定价以及基于使用量或结果的定价;目前多数AI赋能公司将AI功能作为高级产品的一部分或免费提供,但预计未来会转向基于使用量的模型 [69][70] - 定价变化:40%的公司无改变定价计划,37%的受访者正在探索基于消费、投资回报率和使用层级的新定价模型 [75] - 人工智能可解释性和透明度:随着AI产品规模扩大,提供详细的模型透明度报告或关于AI如何影响结果的基本见解变得更关键 [78] - 人工智能合规和治理:多数公司有AI道德和治理政策的护栏,大多数受访者使用人工监督来确保AI公平性和安全性 [81] 组织结构 - 专用人工智能/机器学习领导力:许多公司在收入达到1亿美元时设立专用AI领导职位,可能是由于运营复杂性增加和需要集中的AI战略负责人 [86] - 人工智能特定角色:多数公司目前拥有专用的AI/ML工程师、数据科学家和AI产品经理,其中AI/ML工程师平均招聘时间最长 [89] - 招聘速度:受访者对招聘速度看法不一,招聘慢的主要原因是缺乏合格候选人 [92][93] - 工程团队专注于人工智能的比例:平均而言,公司计划让20 - 30%的工程团队专注于AI,高增长公司这一比例更高 [95] 人工智能成本 - 人工智能开发支出:平均而言,公司将约10 - 20%的研发预算分配给AI开发,多数公司计划在2025年增加AI支出 [100] - 预算分配:随着AI产品规模扩大,人才成本在总支出中的比例下降,而基础设施和计算成本上升 [103] - 基础设施成本:受访者认为API使用费用是最难控制的基础设施成本,公司正在探索使用开源模型和优化推理效率来降低成本 [106][110] - 模型训练:多数受访者至少每月训练或微调模型一次,每月模型训练成本根据产品成熟度从16万美元到150万美元不等 [113] - 推理成本:发布后推理成本激增,高增长AI公司在通用可用性和规模化阶段的推理成本是同行的两倍 [114] - 部署成本:数据存储和处理成本在通用可用性阶段后急剧上升,高增长AI公司在这方面的支出高于同行 [117] 内部生产力 - 内部生产力预算:2025年企业内部AI生产力预算预计接近翻倍,占总收入的1 - 8%,研发预算仍是最常见的预算来源,部分公司开始使用人员预算 [122][125] - 人工智能访问和使用:约70%员工可访问内部AI工具,但只有约50%员工持续使用,成熟企业(收入超10亿美元)的采用难度更大 [129] - 模型选择:选择内部用例的基础模型时,成本是最重要的考虑因素,其次是准确性和隐私 [133] - 模型部署挑战:企业部署AI用于内部用例时面临的最大挑战通常是战略性的,如找到合适的用例和证明投资回报率 [136] - 使用案例数量:公司通常探索多个生成式AI用例,员工采用率高的公司使用7个以上用例 [139] - 顶级用例:按影响排名,编码辅助对生产力的影响远高于其他用例,高增长公司约33%的代码由AI编写,受访者表示这些用例的生产力平均提高15 - 30% [144][145] - 内部人工智能采用态度:高增长公司更积极地试验和采用新AI工具,将AI视为战略杠杆并更快地将其集成到内部工作流程中 [147] - 跟踪投资回报率:多数公司测量内部AI使用的生产力提升和成本节约,部分公司同时跟踪定量和定性效率提升 [150][151] 人工智能构建技术栈 - 模型训练和微调:核心深度学习框架(如PyTorch和TensorFlow)和完全托管或API驱动的产品(如AWS SageMaker和OpenAI的微调服务)都很受欢迎,后期公司更倾向满足企业级需求的工具 [159] - 大语言模型和人工智能应用开发:编排框架占主导地位,如LangChain和Hugging Face的工具集,同时安全和高级软件开发工具包(SDK)也逐渐受到关注 [160][164] - 监控和可观测性:近一半团队依赖现有应用性能管理(APM)/日志记录堆栈,ML原生平台(如LangSmith和Weights & Biases)开始获得一定市场份额,但生态系统仍较分散 [166][167] - 推理优化:NVIDIA的TensorRT和Triton推理服务器占据主导地位,ONNX Runtime和TorchServe是常见的非NVIDIA解决方案 [172][175] - 模型托管:多数团队直接使用OpenAI、Anthropic等提供商的模型主机,AWS Bedrock和Google Vertex AI也有较大市场份额,后期公司更倾向使用超大规模解决方案 [177][180] - 模型评估:没有明确的独立领导者,部分团队使用平台内置的评估功能,新兴的专业框架(如LangSmith和Langfuse)开始受到关注,但仍有部分团队不清楚使用的评估工具 [182][183] - 数据处理和特征工程:经典大数据工具(如Apache Spark和Kafka)占主导地位,Python工具(如Pandas)也有一定使用,专用特征存储的使用率较低 [188][192] - 向量数据库:Elastic和Pinecone是领先的向量数据库,Redis和开源解决方案也在逐渐获得市场份额 [194][196] - 合成数据和数据增强:超半数团队自行构建工具,Scale AI是第三方合成数据平台的领导者,基于编程的框架开始受到关注 [200][202] - 编码辅助:GitHub Copilot使用率近四分之三,Cursor也有较高使用率,低代码或无代码解决方案开始受到关注 [208] - 开发运维和机器学习运维:MLflow是领先的工具,但市场份额仅三分之一,Weights & Biases也有一定份额,市场仍在发展中 [210][213] - 产品和设计:Figma是UI/UX和产品设计的事实上的标准,Miro用于高级协作,部分团队使用低代码或无代码解决方案进行快速原型设计 [215][217] - 内部生产力用例:销售、营销、客户参与、文档和知识检索等领域,团队倾向使用现有工具的嵌入式AI功能,同时也有部分团队使用专业工具或自行开发解决方案 [220][221]