核心观点 - DeepSeek的出现打破了AI大模型研发需要巨额资金和技术积累的固有认知,由一家中国金融领域的初创企业开发出性能卓越的开源大模型[1][4][5] - DeepSeek的成功在于通过算法优化提升算力的边际产出,以技术进步突破规模定律的约束,这背后体现了中国在数字基础设施和人才规模方面的优势[1][8][11] - AI发展同时受规模定律和规模效应影响,规模定律带来后发优势,规模效应带来先发优势,中美在AI领域各有比较优势[15][16][22] - DeepSeek选择开源模式有利于构建更大规模的创新生态,加速AI应用层的渗透,发挥中国在应用端的规模优势[24][26][28] - 金融与科技存在天然联系,金融领域的创新本就是数字科技创新的一部分,金融科技与科技金融需要协同发展[36][38][39] AI经济学:规模定律与规模效应 - 规模定律指在给定算法框架下,增加数据、参数、算力投入可提升AI性能但边际收益递减,规模效应指规模扩大带来单位成本下降和效率提升[8][9][10] - DeepSeek通过算法优化提升算力边际产出,以技术进步突破规模定律约束,在算法框架改善下AI性能可呈现规模报酬递增[11][12][14] - 算法创新依赖于规模经济构建的创新生态,包括企业内部规模经济和上下游协同的外部规模经济[14] - 中国在数字基础设施和人才规模方面的优势为算法创新提供了支撑,体现大国规模经济效应[1][14][15] AI经济学:后发优势与先发优势 - 规模定律隐含后发优势,落后者要素投入边际产出更高,有利于差距收敛;规模效应隐含先发优势,规模报酬递增强化领先者地位[15][16][22] - 中美AI发展指数显示两国在研发端和应用端均具规模优势,美国研发端略强,中国应用端略强[16] - 中美发展路径分化:美国侧重算力优势,中国侧重算法优化和人才规模,2022年中国培养的AI优秀人才占比已达47%[18][19][21] - 美国限制算力出口可能促使中国更聚焦算法优化,强化比较优势,算法技术进步是AI发展的核心驱动力[19][22] 开源促进外部规模经济 - DeepSeek开源模式降低应用层商业壁垒,有利于加速"人工智能+"进程,2025年1月其APP在157个国家和地区下载排名第一[24][26] - 开源系统更依赖外部规模经济,闭源系统更依赖内部规模经济,如Android用户数近iOS三倍但开发者收入更低[25][28] - AI应用层潜在市场规模是算力层和模型层总和的两倍,开源加速渗透可释放大国规模优势,促进经济增长[27][28] - 开源将规模经济收益更多分配给生态伙伴,实现创新社会正外部性,弱化技术进步的贫富分化效果[28] 创新发展模式 - 科技创新与产业创新需要融合发展,中国需摆脱重供给轻需求、重资产轻人才的路径依赖[31][32] - 大市场需求优势是产业创新根本驱动力,如《黑神话悟空》《哪吒之魔童闹海》等成功案例[32] - 大企业擅长渐进式创新,小企业更具颠覆式创新活力,CVC模式可实现两者优势互补[33][34] - 知识产权保护与个人破产制度对激励人才创新创业至关重要[34] 金融与科技关系 - 金融活动尤其是资本市场关键在解决信息不对称,金融领域创新本就是数字科技创新的一部分[36][39] - 量化基金等金融科技是科技工具在金融领域的重要应用场景,AI大模型要素也是其竞争力所在[38] - 资本市场通过外部规模经济支持创新生态,与多样化创新生态更契合,大国资本市场更具优势[37] - 需平衡金融科技监管与包容"动物精神",重点防范不当行为而非限制超额收益本身[39]
中金:从规模经济看DeepSeek对创新发展的启示
中金点睛·2025-02-27 09:46