Workflow
生成式BI如何让西贝XIBEI报表“活”起来?
虎嗅APP·2025-03-20 18:45

核心观点 - 餐饮行业面临"数据洪流"与"决策饥渴"的双重困境,生成式BI技术成为解决这一问题的关键工具 [3] - 公司以"四个正确"为核心目标:在正确的时间、以正确的方式、把正确的数据推送给正确的人 [4] - 数据治理是生成式BI实施的前提条件,公司已花费一年半时间提升数据质量 [9] - 公司从高频刚需场景切入,如门店智能客服与活动效果预测,逐步探索生成式BI的应用 [10] - 未来计划构建"营销活动库"和"运营AI系统"两大智能中枢,实现活动ROI预判和实时策略建议 [16] 数据治理 - 数据治理的首要挑战是业务数据的标准化问题,例如同一菜品在不同场景下的销售方式需统一标准 [9] - 数据治理不仅是技术问题,更需要流程与工具的协同优化,公司成立跨部门项目组梳理业务标准 [9] - 公司采用试点推广策略,先在北京单店试点,逐步拓展到5-10家店,再覆盖整个大区 [9] 用户画像与数据推送 - 公司建立三级用户画像体系,针对不同角色设计差异化推送策略,重点服务门店经营层和区域管理层 [7] - 店长更关心经营相关数据如客流量与翻台率,厨师长更关注菜品制作效率、沽清情况及顾客评价 [7] - 信息密度的动态平衡是核心难点,过多会造成干扰,过少则不足以支撑决策 [5] 应用场景与挑战 - 现阶段聚焦门店智能客服与活动效果预测等场景,与火山引擎、豆包等厂商成立专项试验小组 [10] - 最大挑战是标准的落地执行,例如门店盘点环节需定义食材存放位置并设定"先进先出"规则 [11] - 需将操作规范深度嵌入业务流程,形成可量化的执行评估体系,确保工具的有效使用 [12] 技术合作与未来计划 - 选择合作伙伴时考量三大能力维度:基础数据解析精度、多维分析灵活度、自动化替代效能 [13] - 大模型目前尚不能完全理解业务需求,还需不断打磨 [15] - 未来计划构建"营销活动库"实现活动ROI预判,"运营AI系统"提供实时策略建议 [16] 行业建议 - 切忌盲目追新,先解决数据准确性再谈大模型,测算投入产出比 [17] - 建议以线上高频刚需场景(如自动报表)为突破点,建立小步快跑试点机制 [17] - 生成式BI或将成为餐饮企业的"数字大脑",推动行业从经验驱动转向数据驱动 [17]