核心观点 - 苹果向NVIDIA订购10亿美元的GB300 NVL72 GPU集群服务器系统,标志着其在AI战略上的重大转变,从依赖自研芯片转向商用GPU [1][3] - 这一决策反映了GPU在生成式AI领域的统治地位,以及NVIDIA在AI硬件生态中的不可替代性 [8][14] - 苹果的转向凸显了在AI竞赛中时间优先级的重要性,自研ASIC的开发周期无法满足当前市场需求 [16][19] - NVIDIA的财务表现和产品性能进一步巩固了其在AI硬件领域的领先地位 [8][11] - 尽管ASIC在特定场景下仍有优势,但在当前Gen AI浪潮中,GPU的通用性和生态成熟度使其成为首选解决方案 [16][19] 苹果的AI战略转变 - 苹果长期依赖自研芯片,但在生成式AI领域转向NVIDIA商用GPU,订购约250台NVL72服务器,每台成本370万至400万美元,总价近10亿美元 [3] - 这一转变可能源于自研芯片开发周期长、优化成本高,无法满足市场对高性能计算的迫切需求 [3][16] - 苹果可能采取混合策略:利用NVIDIA GPU进行模型训练,Apple Silicon专注于推理和边缘设备 [6][19] - Siri竞争力下降和生成式AI的快速发展是促使苹果调整AI战略的重要因素 [4][5] NVIDIA的统治地位 - NVIDIA的GPU搭配CUDA生态已成为训练大语言模型的事实标准 [8] - 在截至1月26日的第四季度,NVIDIA实现营收393亿美元,同比增长78%,毛利率高达70%以上 [8] - 约41%的收入来自微软、谷歌、亚马逊和Meta四大客户,这些公司表示GPU供应不足是构建AI数据中心的瓶颈 [9] - GB300 NVL72平台集成了72个Blackwell Ultra GPU和36个Grace CPU,与前代相比响应速度提升10倍,能效吞吐率提升5倍,整体AI产出能力跃升50倍 [11] GPU vs ASIC的技术路线之争 - GPU在通用性、灵活性和生态成熟度方面具有明显优势,特别适合快速迭代的AI市场 [16][17] - ASIC虽然在某些特定任务上效率更高,但开发周期长(通常需要数年),难以跟上AI领域的快速发展节奏 [16] - 博通和Marvell等ASIC厂商在AI训练领域的竞争力无法与NVIDIA抗衡 [17][18] - 时间窗口成为关键因素,在Gen AI竞争中速度比性能稍逊更为重要 [16][19] 行业趋势与市场动态 - 科技巨头在AI基础设施上的投入持续增加:Meta计划今年斥资650亿美元建设AI基础设施,全球九大科技公司预计2025年AI总支出达3710亿美元,同比增长44% [9] - 尽管有DeepSeek等初创公司尝试低成本AI方案,但这反而可能增加全球对AI服务和硬件的需求 [9][10] - Blackwell平台的需求强劲,NVIDIA预计2026财年第一季度营收达430亿美元 [14] - AI推理和训练的双轮驱动逻辑进一步强化了NVIDIA的增长势头 [14]
GPU又赢了?苹果临阵倒戈!