Workflow
ICLR 2025|首个动态视觉-文本稀疏化框架来了,计算开销直降50%-75%
机器之心·2025-04-29 11:22

本文由华东师范大学和小红书联合完成,共同第一作者是华东师范大学在读硕士、小红书 NLP 团队实习生黄文轩和翟子杰,通讯作者是小红书 NLP 团队负责人 曹绍升,以及华东师范大学林绍辉研究员。 多模态大模型(MLLMs)在视觉理解与推理等领域取得了显著成就。然而,随着解码(decoding)阶段不断生成新的 token,推理过程的计算复杂度和 GPU 显存 占用逐渐增加,这导致了多模态大模型推理效率的降低。现有的方法通过减少预填充(prefill)阶段的视觉 token 冗余来实现推理加速。遗憾的是,这种在预填充 阶段实现的视觉 token 稀疏化所带来的加速优势,在解码阶段会逐渐减弱。当解码输出的文本 token 数量增多时,这些方法仍然会遇到性能瓶颈。 为了解决上述问题,团队创新性地提出了一个全新的动态视觉 - 文本上下文稀疏化推理加速框架 ——Dynamic-LLaVA。该框架针对多模态大模型在不同推理模式 下(包括预填充阶段以及有无 KV Cache 的解码阶段),设计了定制化的稀疏化推理方案,以实现多模态大模型的高效推理。实验结果表明,Dynamic-LLaVA 在 几乎不损失视觉理解和生成能力的前提 ...