Workflow
ICML 2025 | 视频生成模型无损加速两倍,秘诀竟然是「抓住attention的时空稀疏性」
机器之心·2025-05-07 15:37

AI视频生成技术发展 - AI视频生成技术进入快速爆发阶段,扩散模型展现出接近现实的生成效果,但速度瓶颈成为大规模应用的主要障碍 [1] - 当前主流视频生成模型(如Wan 2.1、HunyuanVideo)在单张H100 GPU上生成5秒720p视频需耗时30分钟以上,其中3D Full Attention模块占推理时间的80%以上 [1][6] Sparse VideoGen解决方案 - 加州伯克利和MIT研究者提出无需重新训练模型的加速方法Sparse VideoGen,通过挖掘注意力机制的空间与时间稀疏性,将推理时间减半 [2][4] - 该方法支持Wan 2.1、HunyuanVideo、CogVideoX等开源模型,适用于T2V和I2V任务,代码已开源并被ICML 2025收录 [4][8] 扩散式视频生成的性能瓶颈 - 基于Transformer的Video Diffusion Transformers(DiTs)在建模长时空依赖方面优势显著,但3D Full Attention带来巨大计算负担 [6] - Attention计算复杂度随分辨率和帧数呈二次增长,远高于普通图像生成模型 [6] Sparse VideoGen核心技术 - 识别Attention Map中的空间稀疏性(Spatial Head)和时间稀疏性(Temporal Head),分别负责局部空间一致性和跨帧时间一致性 [9][10][11][12] - 采用动态自适应稀疏策略,通过在线稀疏模式优化方法(Online Profiling)选择最优稀疏模式,仅需0.1%的Token采样即可实现精准预测 [15][16][17] 算子层优化 - 引入硬件友好的布局转换方法,将帧为主存储改为token为主存储,优化Temporal Head的内存访问模式 [20] - 定制化优化QK-Norm和RoPE模块,QK-Norm平均加速比达7.4倍,RoPE平均加速比达14.5倍 [21] 实验成果 - Sparse VideoGen在H100上使HunyuanVideo推理时间从30分钟降至15分钟,Wan 2.1从30分钟降至20分钟,PSNR稳定在29dB以上 [23] - 该方法展示视频生成模型可通过结构理解+自适应稀疏性实现性能突破,而非单纯扩大模型规模 [24]