数据与AI融合趋势 - 高质量数据短缺成为AI发展瓶颈,前OpenAI首席科学家Ilya Sutskever警告"预训练时代即将终结"[1] - 全球数据量将从2024年147ZB增长至2028年393.9ZB,年增速达28%[4] - 大数据IT投资规模将从2024年3540亿美元增长至2028年6440亿美元[5] - 数据库发展范式转向"Data×AI",即数据与模型一体化融合发展[1][6] OceanBase战略转型 - 提出构建"一体化数据底座"战略,支持SQL、AP和AI混合负载[2][9] - 15年技术积累支撑支付宝核心系统,连续十年稳定支持双11流量洪峰[13] - 全球唯一同时打破TPC-C和TPC-H测试纪录的数据库[13] - 已服务金融、政务等2000多家客户的关键业务系统升级[13] 技术能力突破 - 向量数据库性能领先,在VectorDBBench测试中超越3款开源产品[13] - 引入BQ量化算法使向量数据内存需求降低95%,2亿条1536维数据从1.2TB降至58.6GB[16] - 支持多模态数据包括标量、JSON、全文索引和向量混合检索[17] - 发布PowerRAG服务,封装文档处理全流程,准确率和召回率优于开发者自建方案[17] 产品发展方向 - 四大战略方向:知识底座、打破数据次元壁、AI靠谱参谋、流量冲浪高手[14] - 增强向量能力与融合检索,实现企业知识库动态更新[14] - 深度整合推理引擎与存储引擎,解决AI查询数据不一致问题[14] - 利用云虚拟化+分布式能力弹性应对流量波动[14] 行业生态布局 - 适配主流智能体平台包括Dify、FastGPT、DB-GPT和LangChain[20] - 开源社区用户突破百万,集群部署量超5万且年增长400%[21] - 连续两年位居墨天轮中国开源数据库排行榜第一[21][22] - 成立AI平台与应用部,CTO亲自担任AI战略一号位[21] 行业趋势判断 - 数据库正成为AI时代关键变量,模型能力取决于数据基础[23][24] - AI应用爆发产生两大需求:更海量数据和混合负载能力[24] - 未来所有数据公司都可能成为AI公司,Data×AI是核心竞争力[22][24] - 行业正从模型竞争转向底层数据基础设施建设[25][26]
AI大厦需要新的地基!
机器之心·2025-05-19 12:03