大模型推理通信优化技术 核心观点 - 华为团队推出FlashComm系列技术,通过数学方法重构集合通信操作,解决大模型推理中的通信瓶颈问题,显著提升性能[10][17] - 三项关键技术分别针对AllReduce优化、计算通信平衡和多流并行,在DeepSeek等模型上实现22%-33%的性能提升[7][11][14][15] - MoE架构的扩展使通信复杂度呈平方级增长,传统方案如AllReduce在多节点部署中面临带宽限制和时延问题[6][8] 技术细节 集合通信基础 - 全量规约(AllReduce)用于梯度汇总,全量收集(All-Gather)实现数据聚合,规约散射(Reduce-Scatter)分摊计算压力[3] - 张量并行(TP)依赖All-to-All交换张量片段,数据并行(DP)需AllReduce同步梯度,专家并行(EP)需广播传递中间结果[4] 通信挑战 - MoE模型参数突破千亿级,专家路由与数据分发导致通信带宽需求呈平方级增长[6] - TP方案中AllReduce操作占端到端推理时延的30%以上,跨节点带宽限制加剧时延[6][8] 解决方案 - FlashComm1:拆解AllReduce为ReduceScatter+AllGather,插入INT8量化使通信量降35%,计算量减至1/8,DeepSeek模型Prefill性能提升26%[7][11] - FlashComm2:重构矩阵乘法并行维度,通信量降86%,整体推理速度提升33%[7][14] - FlashComm3:实现MoE五大模块三流并行,Decode吞吐提升30%,多卡并行释放2GB内存[15] 行业影响 - 昇腾硬件通过多流引擎支持计算通信重叠,构建大模型推理全栈生态[17][18] - 未来方向包括权重自动预取、模型自动多流并行等,持续优化超大规模EP架构[17]
帮大模型提速80%,华为拿出昇腾推理杀手锏FlashComm,三招搞定通算瓶颈
机器之心·2025-05-22 18:25