Workflow
40位数学家组成8队与o4-mini-medium比赛,6队败北
机器之心·2025-05-24 11:13

AI与人类数学能力对比 - AI模型o4-mini-medium在FrontierMath基准测试中以6:2的比分击败了8支人类数学专家团队中的6支 [1] - o4-mini-medium在竞赛中得分22%,高于人类团队平均分19%,但低于所有团队综合得分35% [7] - Epoch AI预测AI很可能在年底前明确超越人类数学能力 [27] FrontierMath基准测试设计 - 测试包含300道题,难度从本科生水平到菲尔兹奖级别 [3] - 竞赛选取23道题(7道基础题+16道进阶题),涵盖拓扑学、代数几何等四个子类 [16] - 评分机制:进阶题每题2分,基础题1分,每个领域至少答对一题额外加1分 [16] - 题目难度分为3级,竞赛中普通题为1-2级,高级题均为3级 [24] 人类参赛者表现分析 - 40名参赛者(数学博士或竞赛获奖者)组成8个团队,每组4-5人 [11] - 人类团队解题正确率在13%-26%之间,平均19% [19] - 若考虑任何一支团队答对即算人类答对,人类正确率可提升至35% [21] - 参赛者在最喜欢的测试题上平均花费40分钟 [28] 测试结果解读 - 调整难度权重后,人类平均得分约30%,"多次尝试"方法下可达52% [24] - AI解题时间(5-20分钟/题)显著短于人类 [27] - 人类在长期扩展行为上优于AI,表现能持续提升 [29] - 当前测试可能低估人类能力,更多时间可能提升表现 [27] 测试局限性 - 参赛者不能完全代表前沿数学水平 [10] - 竞赛题目仅为FrontierMath的不具代表性子集 [8] - 人类基准定义模糊,估计值在30%-50%之间 [8][20] - 竞赛形式限制了人类表现,如时间压力等因素 [27]