智能体技术路径选择 - 公司从RPA技术起步,结合OCR与自然语言处理技术实现初级智能化,2019年提出"数字员工"概念[4] - 2023年ChatGPT爆发后,通过大模型+RPA+视觉技术实现人类形态的工作能力,推出国内首款通用智能体产品[5][7] - 技术路线选择上强调不能完全依赖大模型,需结合外部工具(如RPA、API)解决幻觉和效率问题[7][8][9] - 垂直领域大模型对业务场景的Agent研发具有必要性,公司基于4000家客户数据训练行业专用模型[19][24] 产品转型与架构重构 - 对RPA底层进行两大改造:1) 推出"融合拾取"技术解决通用性问题,拥有15项专利 2) 引入AI-RPA模式提升易用性[11][12][13] - 重构底层通信架构,使任何软件都能被默认识别,效率显著提升[13] - 可靠性系统需满足可控性(结果一致)、稳定性(多次运行无差异)、高效性三大特点[16][17] - 通过外挂知识库、提示词工程、垂直模型微调等手段将大模型幻觉率降至可用阈值[17][20] 商业化与竞争策略 - 收费模式按机器人数量收取年租费,避免价格战,强调差异化价值[32][33][34] - 通过免费社区版转化企业客户,当前已服务超4000家企业[36] - 核心商业价值在于引发生产关系变革,未来企业可能演变为"1人公司+数字员工"模式[30][31] - 护城河在于行业理解深度与技术积累,不直接提供定制化服务而依赖合作伙伴生态[35][39] 行业趋势与产品形态 - 预测2025年为智能体商业化元年,2024年是探索期,企业端应用将大规模爆发[40] - 最终产品形态可能是对话式助手,交互界面简化为单一对话框甚至语音交互[42] - 当前挑战在于快速落地能力,需平衡技术路线选择(大模型/RPA/API组合)与用户需求匹配[41] - 企业员工对AI接受度提升,人机协同被视为现阶段最可靠方案[43][44] 技术实现差异与行业认知 - 通用智能体需解决底层通用性问题,垂直智能体需深耕行业知识与业务逻辑[24] - 大模型本身不是产品,需结合RAG等增强技术解决验收标准问题[28] - MCP技术被过度炒作,实际仅封装问题而非解决本质,过度依赖会导致调试困难[22] - 智能屏幕语义理解属于多模态技术分支,专注于界面元素识别等操作类任务[18]
别被MCP的包装骗了!重构系统、向智能体转型,CEO亲述:关键时刻还是RPA兜底?
AI前线·2025-06-07 12:41