Workflow
近期必读!Devin VS Anthropic 的多智能体构建方法论
歸藏的AI工具箱·2025-06-15 16:02

多智能体系统概述 - 多智能体系统由多个大型语言模型(LLM)智能体协同工作组成 主智能体(协调器)负责规划任务并委托给并行操作的子智能体 具体步骤包括任务分解、子智能体执行和结果合并[4][6] - 该系统特别适合开放式研究任务 因其具备动态调整和并行探索能力 在广度优先查询中性能比单智能体提升90.2%[14][27] - 核心架构采用协调者-工作者模式 主智能体(LeadResearcher)负责策略制定和结果综合 子智能体(Subagents)并行执行具体任务[29][30] 多智能体系统优势 - 并行操作优势显著:子智能体通过独立上下文窗口并行运行 主智能体可同时启动3-5个子智能体 使复杂查询研究时间缩短90%[16][17] - 信息处理效率提升:通过关注点分离和并行推理 系统能更彻底地调查问题 在识别S&P 500公司董事会成员等任务中表现优于单智能体[27] - 动态适应能力强:研究过程中可根据新发现调整方法 支持先广后深的搜索策略 模仿人类专家研究模式[33][34] 多智能体系统挑战 - 架构脆弱性问题:子智能体可能误解任务导致结果不一致 早期系统出现过为简单查询生成50个子代理等协调问题[10] - 上下文共享难题:子智能体间缺乏充分上下文共享 可能基于冲突假设行动 如分别构建不同风格的《飞扬的小鸟》游戏元素[19][20] - 资源消耗巨大:多智能体系统token消耗达聊天交互的15倍 仅适用于高价值任务 编码等依赖性强任务目前不适用[17][28] 解决方案与优化措施 - 严格领域限定:仅应用于适合并行化的研究任务 排除编码等依赖性强领域 通过专用提示工程明确子智能体职责[8][12] - 高级上下文管理:采用文件系统直接存储输出 建立记忆机制保存关键信息 在上下文接近限制时生成新智能体交接[16][30] - 精细化提示工程:包含7项核心原则 如教导协调器明确委派任务 根据查询复杂度动态调整工作量 优先使用专用工具等[33] 行业应用现状 - 主要应用场景包括:专业软件开发(10%)、技术内容优化(8%)、商业策略制定(8%)、学术研究辅助(7%)和信息验证(5%)[38] - 实际效果显著:用户反馈显示能发现新商业机会 解决技术难题 在医疗保健等领域节省数天研究时间[38] - 评估方法创新:采用LLM作为裁判评估事实准确性等维度 结合人工测试发现边缘案例 需同时关注结果正确性和过程合理性[36]