Workflow
Karpathy 最新演讲精华:软件3.0时代,每个人都是程序员
歸藏的AI工具箱·2025-06-19 16:20

软件开发范式演变 - 软件1 0定义为传统代码编程 程序员使用Python C++等语言编写明确指令 源代码编译为二进制文件 典型例子包括特斯拉自动驾驶早期C++代码 [5][6] - 软件2 0以神经网络权重为核心 通过数据集训练生成参数 优势包括计算同质性 硬件易实现性 超人性能等 代表案例有AlexNet和AlphaGo Zero [7][10] - 软件3 0由大型语言模型驱动 自然语言提示成为编程方式 LLMs被视为新型计算机 类比1960年代操作系统 具有自然语言接口和用户普及特性 [11][12][14] LLM技术特性与类比 - 公用事业特性:LLMs需要高资本支出训练 通过API提供服务 OpenRouter实现供应商切换 服务中断会导致"智能断电" [16] - 晶圆厂特性:训练需巨额投入 NVIDIA GPU类似"无晶圆厂"模式 Google TPU则像自建晶圆厂 但软件防御性弱于物理设施 [17] - 操作系统特性:LLMs形成复杂软件生态系统 应用可跨后端运行 当前处于类似1960年代的分时计算阶段 个人计算革命尚未到来 [18] LLM认知模型与缺陷 - 超能力:具备百科全书级知识记忆 远超人类个体能力 [22] - 认知缺陷:包括幻觉 锯齿状智能 顺行性遗忘和易受骗性 需要人类监督验证 [23] - 人机协作:需保持AI在"牵引绳"上 通过生成-验证循环和GUI加速审计 [26] 行业应用机遇 - 部分自主应用:应具备上下文管理 多模型编排 专用GUI和自主性滑块 类似Cursor和Perplexity的交互设计 [26][28] - Vibe Coding:降低编程门槛实现"人人都是程序员" 但产品化面临非代码操作挑战 [30] - Agent基础设施:需构建lm.txt文件 LLM优化文档 上下文工具等支持Agent交互的新范式 [33][34] 技术扩散特征 - 逆向扩散路径:LLMs首先惠及普通消费者 ChatGPT成增长最快应用 企业政府应用滞后于组织惯性和合规障碍 [19][20] - 钢铁侠战甲策略:优先开发增强工具而非完全自主Agent 通过自主性滑块渐进升级 [2][28] - 长期发展预期:2025-2035年为Agent十年 需克服演示到产品的可靠性鸿沟 [27]