量产项目卡在了场景泛化,急需千万级自动标注?
自动驾驶之心·2025-06-21 21:15
而自从端到端和大语言LLM横空出世以来,大规模无监督的预训练 + 高质量数据集做具体任务的微调, 可能也会成为量产感知算法下一阶段需要发力的方向。同时数 据的联合标注也是当下各家训练模型的实际刚需,以往分开标注的范式不再适合智能驾驶的算法发展需求。今天自动驾驶之心就和大家一起分享下4D数据的标注流 程: 最复杂的当属动态障碍物的自动标注,涉及四个大的模块: 而为了尽可能的提升3D检测的性能,业内使用最多的还是点云3D目标检测或者LV融合的方法: 得到离线单帧的3D检测结果后,需要利用跟踪把多帧结果串联起来,但当下跟踪也面临诸多的实际问题: 离线3D目标检测; 离线跟踪; 后处理优化; 传感器遮挡优化; 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 千万级4D标注方案应该怎么做? 智能驾驶算法的开发已经到了深水区,各家都投入了大量的精力去做量产落地。其中一块最关键的就是如何高效的完成4D数据标注。无论是3D动态目标、OCC还是静 态标注。 相比于车端的感知算法,自动标注系统更像是一个不同模块组成的系统, 充分利用离线的算力和时序信息,才能得到更好的感知结果 ...