深入浅出完整解析LoRA(Low-Rank Adaptation)模型核心基础知识
自动驾驶之心·2025-06-22 22:09
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 大模型高效微调已经成为业界关注的焦点,无论是通用大模型,还是智驾大模型,如何通过轻量微调变成各个不同领域的专业模型,成为 讨论的热点。所以今天就来大家一起聊聊LORA。 背景: 业内的大公司或者研究机构,都是有足够资源的来开发大模型,但是对于一般的小公司或者个人来说,要想开发自己的大模型几乎 不可能,要知道像 ChatGPT 这样的大模型,一次训练的成本就在上千万美元,而即使是DeepSeekv3,单次训练成本也在500万美元以上, 所以充分利用开源大模型,在领域任务上高效微调便成为了当下学术界和工业界迫切需要解决的问题,至此LoRA问世: LoRA 的思想很简单: 而这个降维的操作就需要用到低秩分解了,接下来我们回顾下低秩分解: * [16] A. A. K. 那么LoRA训练的思路和优势是什么呢? 在原始 PLM (Pre-trained Language Model) 旁边增加一个旁路,做一个降维再升维的操作,来模拟所谓的intrinsic rank。 训练的时候固定 PLM 的参数,只训练降维矩阵 A ...