Workflow
穆尧团队最新!RoboTwin 2.0:用于鲁棒双臂操作的可扩展数据基准
自动驾驶之心·2025-06-24 20:41

核心观点 - RoboTwin 2.0是一个可扩展的仿真框架,旨在解决双臂机器人操作中数据生成和仿真环境简化两大挑战,通过自动生成多样化且逼真的数据提升策略鲁棒性[2] - 该框架引入五个维度的结构化域随机化(杂乱程度、光照、背景、桌面高度和语言指令),显著增强数据多样性和策略泛化能力[4] - 在50个双臂任务中预收集超过10万条域随机化专家轨迹,覆盖五种机器人实体,实证显示代码生成成功率提高10.9%,真实任务性能提升367%[4] 方法创新 自动专家代码生成 - 结合多模态大语言模型(MLLMs)与仿真闭环优化,通过代码生成agent和视觉-语言模型观察者的双AI agent架构实现迭代优化[10] - 在10项任务评估中,RoboTwin 2.0+MM FB配置达到71.3%的成功率,较基础版本提升23.9个百分点[27] 域随机化设计 - 场景杂乱:基于147类别731个标注物体的RoboTwin-OD库生成语义丰富的干扰场景[12] - 光照变化:随机化色温、光源类型(点光源/区域光源)等参数模拟现实光照条件[13] - 语言指令:通过MLLMs自动生成多样化任务指令和物体描述,覆盖几何/外观/部件级属性[13] 实体感知适应 - 为不同自由度机器人(7-DoF/6-DoF)定制抓取策略,使低自由度平台成功率提升13.5%-22.7%[29] - 通过标注物体关键点轴信息(抓取点/功能点)支持跨实体部署,平均任务成功率提高8.3%[16][31] 数据集与基准 RoboTwin-OD物体库 - 包含147类别731个实例,其中534个通过RGB到3D重建生成,均标注语义和操作相关标签(放置点/抓取轴)[18] 预收集数据集 - 覆盖50项双臂任务和5种机器人实体,包含10万+轨迹(每任务100条干净轨迹+400条随机化轨迹)[24] 性能验证 - 仿真到现实迁移:添加1,000条RoboTwin 2.0合成轨迹使现实任务成功率最高提升33个百分点[36] - 基准测试显示预训练模型(如RDT)在Hard条件下保持优势,非预训练模型性能下降显著[37]