4D自动标注技术 - 4D自动标注是自动驾驶数据闭环的核心环节 涉及3D动态目标 OCC 静态标注和端到端标注 需融合多传感器数据并保证时空一致性 [2] - 动态障碍物标注流程包含四大模块 离线3D目标检测 离线跟踪 后处理优化 传感器遮挡优化 其中点云3D目标检测和LV融合是主流方法 [2][4] - 静态元素标注需基于SLAM重建图获取全局道路信息 避免单帧感知偏差 动态元素则需通过跟踪串联时序结果 [5][13] 技术难点 - 时空一致性要求极高 复杂场景下动态目标跨帧标注易断裂 需解决遮挡 形变等问题 [6] - 多模态数据融合复杂 需同步激光雷达 相机 雷达数据 处理坐标对齐和时延补偿 [6] - 动态场景泛化难度大 交通参与者行为不确定性和环境干扰增加模型适应性挑战 [6] - 量产场景泛化是痛点 需解决不同城市 道路 天气条件下的数据挖掘和标注算法性能 [7] 课程内容体系 - 课程覆盖4D自动标注全流程 包括动态障碍物检测跟踪 OCC标注 端到端标注等六大核心模块 [7] - 动态障碍物标注章节详解SAFDNet算法和DetZero时序后处理 包含数据增广 BEV融合等实战内容 [10] - 激光&视觉SLAM重建章节讲解Graph-based算法原理 解决静态元素标注的全局道路建模问题 [11] - 端到端真值生成章节包含动态障碍物 静态元素 可行驶区域的全流程串联 并扩展闭环仿真技术 [15] 行业应用趋势 - 端到端大模型+高质量数据集微调成为量产感知算法新方向 数据联合标注取代传统分开标注模式 [2] - OCC标注成为行业标配 需解决基于Lidar/视觉的方案稠密化 噪声优化和跨传感器遮挡问题 [14] - 数据闭环面临scaling law有效性验证 跨传感器系统协同等挑战 需优化迭代效率提升泛化能力 [16]
为什么做不好4D自动标注,就做不好智驾量产?
自动驾驶之心·2025-06-25 17:48