Workflow
数据闭环的核心 - 静态元素自动标注方案分享(车道线及静态障碍物)
自动驾驶之心·2025-06-26 21:33

4D自动标注技术发展 - 轻图算法量产已成为行业共识 公司通过标注数据训练云端模型 再反哺车端模型迭代 实现全场景静态元素标注[1] - 传统2D图像标注需逐帧标注 效率低下 3D场景重建技术可实现静态元素单次标注 显著提升效率[2][3] - 行业采用BEV视图转换技术 通过自车位姿滑动窗口截取局部地面重建图 优化云端自动标注模型训练流程[6] 技术难点与解决方案 - 4D自动标注面临时空一致性要求高 多模态数据融合复杂 动态场景泛化难度大等五大核心挑战[7] - 静态元素标注需结合SLAM重建输出 获取全局道路信息 避免单帧感知导致的道路偏差问题[14] - 通用障碍物OCC标注成为行业标配 需解决点云稠密化 噪声优化 跨传感器遮挡等工程难题[15] 技术应用与课程体系 - 端到端真值生成整合动态障碍物 静态元素 可行驶区域等模块 采用一段式和两段式实现方案[16] - 数据闭环专题涵盖scaling law验证 主流公司架构分析 跨系统问题解决等实战经验[18] - 课程体系覆盖动态障碍物检测跟踪 SLAM重建原理 OCC标注全流程等六大核心模块[8][11][12][15][16] 行业人才需求 - 课程目标群体包括高校研究人员 企业技术骨干 转行人员等 需具备深度学习和PyTorch基础[22][24] - 课程培养方向聚焦4D标注算法研发能力 实际问题解决能力 工作竞争力提升三大维度[23]