目标驱动导航技术概述 - 具身导航涉及语言理解、环境感知、路径规划三大技术支柱,目标驱动导航是其最具代表性的方向,要求智能体在陌生环境中仅凭目标描述自主完成探索与路径规划[2] - 与传统视觉语言导航不同,目标驱动导航需实现从"听懂指令走对路"到"看懂世界自己找路"的跃迁,涉及语义解析、环境建模和动态决策能力[2] 产业化落地现状 - 终端配送场景中,美团无人配送车通过动态路径重规划在复杂城市环境执行任务,Starship Technologies的园区配送机器人已在欧美高校和社区部署[3] - 医疗/酒店/餐饮场景中,嘉楠科技、云迹科技、擎朗智能的商用服务机器人及美国Aethon的TUG系列实现药品、文件和餐食自主配送[3] - 人形机器人领域,宇树科技Unitree系列通过Habitat预训练完成基础导航,智元机器人集成目标导航模块,特斯拉Optimus展示端到端操作能力[3] 技术发展代际 - 第一代端到端方法:基于强化学习与模仿学习,在PointNav和闭集图片导航任务中SPL指标逼近人类表现[5] - 第二代模块化方法:通过显式构建语义地图分解任务,在零样本ObjectNav任务中未见物体场景成功率显著提升[5] - 第三代LLM/VLM融合方法:利用大语言模型生成语义指导策略,视觉语言模型提升开放词汇匹配精度,当前重点为设计场景表征接口[7] Habitat仿真生态 - 2020年CVPR提出PointNav基准后,评测体系扩展至ImageNav、ObjectNav及移动抓取任务,形成技术闭环[4] - 视觉预训练模型提升特征泛化能力,DDPPO框架使PointNav任务SPL指标显著提升,LLM解决部分开放词汇导航难题[4] - Meta AI的Sim2Real迁移框架为仿真到真实部署提供方法论,CMU与Stanford推动动态环境语义地图更新技术[4] 技术挑战与课程设计 - 学习路径需整合自然语言处理、计算机视觉、强化学习和场景图知识,面临论文碎片化与实战闭环缺失的挑战[9] - 课程覆盖三代技术演进路径(端到端/模块化/LLM融合),包含Habitat仿真生态解析及VLFM算法复现等实战环节[15][16][24] - 学员将掌握零样本导航、开放词汇识别等关键技术,理解Sim2Real部署流程,具备论文级算法改进能力[31]
今年大火的目标导航到底是什么?从目标搜索到触达有哪些路线?
具身智能之心·2025-06-26 22:19