具身AI与多传感器融合感知的重要性 - 具身AI是以物理实体为载体,通过实时感知实现自主决策和行动能力的智能形式,在自动驾驶、机器人群体智能等领域有广泛应用,是突破AI发展瓶颈、实现通用人工智能(AGI)的关键路径 [2] - 传感器数据理解是连接物理世界与数字智能的核心环节,具身智能体需要融合视觉相机、毫米波雷达、激光雷达(LiDAR)、红外相机和IMU等多模态传感器数据以实现全景感知 [2] - 多传感器融合感知(MSFP)对实现具身AI的稳健感知和准确决策能力至关重要,例如视觉相机易受光照变化干扰,而激光雷达在雨雾天气性能会大幅衰减 [2] 现有研究的局限性 - 当前基于AI的MSFP方法在具身AI中面临跨模态数据的异质性使得特征空间难以统一的挑战 [3] - 不同传感器之间的时空异步可能导致融合误差,传感器故障(如镜头污染、信号遮挡)可能导致多模态信息的动态丢失 [3][4] - 现有综述大多面向单一任务或研究领域,如3D目标检测或自动驾驶,缺乏对多智能体融合、时间序列融合等MSFP方法多样性的考虑 [4] 传感器数据 - 相机数据可捕捉物体的颜色、形状和纹理等丰富外观特征,但对光照条件敏感,在夜间和恶劣天气下图像质量显著下降 [7] - 激光雷达(LiDAR)数据直接输出包含空间几何信息的高精度3D点云,在3D感知中具有独特优势,但对天气敏感且点云数据稀疏不均匀 [7] - 毫米波雷达数据在恶劣天气下性能良好,可直接测量物体速度,但点云更稀疏难以准确描述物体轮廓 [10] 数据集 - KITTI包含14,999张图像及相应点云,数据采集车辆配备两台灰度相机、两台彩色相机、一个Velodyne 64线LiDAR等设备 [13] - nuScenes包括700个训练场景、150个验证场景和150个测试场景,总计5.5小时,包含140万张相机图像、39万次LiDAR扫描 [13] - Waymo Open包括感知和运动数据集,感知数据集中的注释包括126万个3D边界框、118万个2D边界框 [14] 感知任务 - 目标检测是通过传感器获取的数据准确定位和识别各种类型的物体,在3D目标检测场景中需包括目标的3D位置坐标、尺寸信息和航向角 [16] - 语义分割任务旨在将场景中的每个基本单元分类为语义类别,分割模型需要为每个基本单元分配相应的语义标签或类别概率分布 [16] - 深度估计旨在从传感器数据中获取场景的深度信息,为具身智能体提供3D几何理解,对路径规划和决策控制等下游任务至关重要 [16] 多模态融合方法 - 点级融合方法实现LiDAR点云与图像数据在单个点级别的特征融合,通过集成点云的几何坐标信息与图像的语义细节提高多模态感知精度 [21] - 体素级融合方法将不规则的LiDAR点云转换为规则网格,在保留几何信息的同时实现高效处理,相机图像被集成到基于体素的方法中以获得更好的感知能力 [23] - 区域级融合方法侧重于从2D图像和其他模态聚合特定区域的信息,在模态之间的空间对齐更容易实现的场景中特别有效 [28] 多智能体融合方法 - 协作感知技术可以集成来自多个智能体和基础设施的感知数据,对解决遮挡和传感器故障问题至关重要 [34] - CoBEVT是第一个通用的多智能体多相机感知框架,通过稀疏Transformer生成BEV分割预测以进行协作处理 [34] - V2VNet引入了一个基于图神经网络的框架,用于融合来自多辆车的中间特征表示 [35] 时间序列融合 - 密集查询方法为高分辨率3D空间或BEV空间中的每个查询点分配固定的光栅化空间位置,BEVFormer通过可变形注意力机制实现多个相机视图中的自适应特征交互 [44] - 稀疏查询方法因其效率、准确性和适用于稀疏感知任务而在行业中越来越受欢迎,StreamPETR通过对象查询系统地在帧间传播长期信息 [47] - 混合查询方法结合密集和稀疏查询范式,以平衡计算效率和全面的场景理解,UniAD将感知、预测和规划集成在一个统一的框架中 [51] MM-LLM融合方法 - 视觉-语言方法结合视觉和文本数据进行语义对齐,X-Driver利用具有思维链推理和自回归建模的多模态大型语言模型实现卓越的闭环自动驾驶性能 [57] - 视觉-LiDAR-语言方法将点云特征与文本特征对齐,DriveMLM采用时间QFormer处理多视图图像,有效捕捉不同视角之间的时间动态和空间关系 [59] - MAPLM将3D LiDAR点云数据投影到BEV图像,并通过视觉编码器提取特征,使强大的视觉模型的使用成为可能 [60]
清华大学最新综述!当下智能驾驶中多传感器融合如何发展?
自动驾驶之心·2025-06-26 20:56