Workflow
登上热搜!Prompt不再是AI重点,新热点是Context Engineering
机器之心·2025-07-03 16:01

上下文工程的核心概念 - 将LLM视为通用的、不确定的文本生成函数而非拟人化实体 强调其无状态特性 需通过输入文本来控制输出[4][5][8] - 上下文工程的核心在于构建有效输入文本系统 而非依赖单句"魔法咒语"式的提示词工程[9][11] - LLM被类比为新型操作系统 需要为其准备完整运行环境而非零散指令[13] 上下文工程的技术要素 - 采用自动化系统构建"信息流水线" 从多源自动抓取整合数据形成完整上下文[15][17] - 工具箱包含四大核心工具:指令下达、知识记忆管理、检索增强生成(RAG)、智能体自主查资料[19][21] - RAG技术通过知识库检索防止模型幻觉 确保回答基于事实[19] - 智能体技术实现动态信息获取 自主判断需求并整合多源数据[21] 工程实践方法论 - 采用科学实验式流程 分"从后往前规划"和"从前往后构建"两阶段实施[23][24][25] - 实施路径:明确输出目标→倒推所需输入→设计自动化生产系统[26] - 模块化开发流程:依次测试数据接口、搜索功能、打包程序 最终进行端到端系统测试[30] - LangChain生态提供实践支持 包括LangGraph和LangSmith等工具[29][31]