LLM在学术写作中的使用现状 - 2024年PubMed上发表的150万篇生物医学研究摘要中,超过20万篇频繁出现LLM特征词,占比约14% [1] - 部分国家和学科中AI辅助写作比例已超过五分之一,且趋势持续上升 [3] - 自ChatGPT实现学术文本生成后,LLM被广泛融入论文写作流程,甚至出现合作撰写现象 [5] LLM的文本特征识别方法 - 研究团队分析2010-2024年1400万篇PubMed摘要,构建词汇二元矩阵计算超额使用指标 [10] - 2024年后"intricate"、"notably"等风格词超额使用,其中66%为动词(如"delving")、16%为形容词(如"crucial") [11] - 通过222个低频风格词+10个高频词组合计算,2024年论文中10%-11%摘要使用LLM,部分子库高达30% [13] 跨领域使用差异 - 计算领域和生物信息学等学科LLM使用率达20%,因技术迭代快需快速掌握新技术 [16] - 非英语国家(如中国、韩国)LLM辅助英语写作使用率15%,显著高于英语国家 [16] - 开放获取期刊《Sensors》LLM使用率24%,而《Nature》《Science》等顶刊仅6%-8% [16] 人为干预对特征词的影响 - 2024年4月起"delve"、"intricate"等ChatGPT特征词使用频率显著下降 [23] - 实验显示提示词干预可降低LLM特征词频率,但无法完全消除 [25] - Binoculars检测器对提示词修改后的文本敏感度降低,但无法准确区分真实与LLM生成文本 [27] 未来研究方向 - 需通过统计大量文本词汇频率(而非单篇检测)量化AI对学术文献的影响 [28] - 当前MGT检测器准确度受模型类型、文本类别和人为修改策略多重影响 [28] - 亟需建立AI参与学术写作的边界标准和使用规范 [28]
14%论文都有AI代写?Nature:每7篇就有1篇藏有ChatGPT特征词
量子位·2025-07-04 15:02