大模型优化课程核心内容 课程简介与目标 - 聚焦大语言模型(LLM)和多模态模型的前沿优化技术,涵盖参数高效计算、知识动态扩展、复杂推理三大方向[1] - 关键技术包括结构化剪枝、低比特量化、动态检索、角色化智能体、多跳推理等[1] - 采用LLaMA、GPT等主流模型作为实验平台,结合理论讲解与实验实践[1] 课程结构与内容 - 12周在线科研+2周论文指导+10周论文维护期的完整科研周期[11] - 每周1-1.5小时课程,覆盖剪枝稀疏化、量化加速、PEFT微调、RAG知识扩展、CoT推理等核心技术[16][18] - 提供公开数据集和Baseline代码,包括LLM-Pruner、GPTQ、LLaVA等开源项目[15] 学员收获与产出 - 系统掌握大模型优化知识体系,解决零散知识整合问题[5] - 获得定制化研究idea,完成论文初稿并掌握顶会论文写作方法论[11][18] - 提升coding能力,在baseline代码基础上开展创新实验[11] 招生要求与资源配置 - 每期限招6-8人,要求具备PyTorch和Python基础,熟悉深度学习框架[3][7] - 硬件建议配置4张4090显卡,最低要求2张4090[12] - 需完成Linux开发环境搭建,掌握CUDA基础语法和代码辅助工具[12] 核心技术与参考文献 - 重点论文包括GPTQ量化(NeurIPS 2023)、Sheared LLaMA剪枝(ICML 2024)、LLaVA多模态(NeurIPS 2023)等[15][17] - 涉及TVM编译器优化(OSDI 2018)、PagedAttention内存管理(SOSP 2023)等系统级优化技术[17] - 涵盖Flamingo多模态学习(NeurIPS 2022)、CoT推理(NeurIPS 2022)等前沿算法[17]
下一代大模型高效计算:参数压缩、硬件适配与多模态推理、CoT等方向论文指导班来啦!
自动驾驶之心·2025-07-04 15:13