自动驾驶行业就业趋势 - 双非研究生在自动驾驶和具身智能领域面临就业挑战,需提升技术实力和背景竞争力 [2] - 行业需求集中在端到端、大模型、VLA、强化学习、3DGS等前沿方向,传统技术人才已相对饱和 [3] - 机器人/具身智能初创公司融资活跃,技术栈培养全面,深圳、杭州是产业聚集地 [3][4] 技术发展方向 - 视觉大语言模型、世界模型、扩散模型和端到端自动驾驶是四大前沿技术方向 [8] - 视觉大语言模型领域涵盖预训练、迁移学习、知识蒸馏等技术,涉及图像分类、文本检索、行为识别等任务 [10][13][14] - 世界模型在自动驾驶中实现3D场景理解和生成一体化,如HERMES、DrivingGPT等模型 [31][32] - 扩散模型应用于自动驾驶视频生成、3D视觉、轨迹预测等领域,技术成熟度快速提升 [33][35][40] 数据集与评估体系 - VLM预训练数据集规模从百万级到百亿级,如LAION5B含50亿图文对,WebLI含120亿数据 [16] - 自动驾驶专用数据集覆盖2D/3D目标检测、语义分割、轨迹预测等任务,如NuScenes、Waymo Open Dataset等 [22][23] - 评估指标包括mAP(目标检测)、mIoU(语义分割)、Recall(文本检索)等,不同任务有标准化测试集 [17][20][21] 应用领域创新 - 智能交通领域采用语言引导的车辆检索技术,如Multi-granularity Retrieval System提升自然语言交互能力 [24] - 自动驾驶感知系统集成VLM技术,实现开放词汇检测(OpenScene)和语言引导3D检测(Language-Guided 3D Object Detection) [25] - 决策控制系统结合LLM,如GPT-Driver、DriveGPT4实现可解释的轨迹规划和运动控制 [26][27] 端到端自动驾驶进展 - 端到端方法整合感知、预测、规划模块,DriveGPT4、DriveMLM等模型实现行为状态对齐 [28][48] - 技术挑战包括长尾分布处理(BEVGPT)、开环控制优化(MiniDrive)和安全性验证(CAT) [50][56] - 行业报告指出端到端技术需平衡模块化与一体化,特斯拉FSD验证了大规模数据驱动的可行性 [45] 行业资源与社区 - 知识星球提供自动驾驶课程、硬件代码资料及招聘信息,已吸引华为天才少年等专家加入 [5][60] - GitHub资源库汇总Awesome系列,如Awesome-Diffusion-Models、Awesome-End-to-End-Autonomous-Driving等 [34][42] - 学术会议(CVPR、ICRA)设立自动驾驶专题研讨会,推动技术标准化和产学研合作 [46]
2025秋招开始了,这一段时间有些迷茫。。。
自动驾驶之心·2025-07-08 15:53