Workflow
师兄自己发了篇自动驾大模型,申博去TOP2了。。。
自动驾驶之心·2025-07-09 20:56

大模型在自动驾驶领域的应用趋势 - 大模型在自动驾驶功能上的落地逐渐清晰化,理想、华为等公司开始推行VLA、VLM方案 [2] - 下一代大模型需关注轻量化与硬件适配、知识蒸馏与量化加速、高效微调等方向 [2] - CoT方案和VLA+强化学习等高级推理范式成为行业重点 [2] 大模型优化技术研究方向 - 参数高效计算:研究剪枝稀疏化和量化加速等轻量化方法 [3] - 知识动态扩展:探索检索增强生成(RAG)和参数高效微调(PEFT)技术 [3] - 复杂推理优化:研究链式思维(CoT)和强化学习优化(GRPO)等范式 [3] 课程核心内容 - 系统探讨大模型前沿优化方法,包括参数压缩、知识扩展和推理优化 [3] - 关键技术涵盖结构化剪枝、低比特量化、动态检索、多跳推理等 [3] - 实验平台使用主流大模型如LLaMA、GPT,结合理论讲解与实践 [3] 课程目标与收获 - 帮助学员系统掌握大模型优化理论,形成清晰知识体系 [8] - 提升Coding能力,实现论文复现与模型开发 [8] - 提供论文写作方法论、修稿指导与投稿建议 [8] 课程招生与要求 - 招生对象:大模型方向本硕博、申硕申博、AI领域从业者 [9] - 招生人数:6人/期,至多8人 [5] - 要求:具备深度学习基础,熟悉Python和PyTorch,有研究热情 [10] 课程大纲与时间安排 - 12周在线科研+2周论文指导+10周论文维护期 [9] - 每周主题涵盖大模型剪枝、量化加速、PEFT、多智能体协作等 [20] - 最终产出论文初稿,具备投稿潜力 [9] 实验与资源支持 - 提供Baseline代码,涵盖剪枝、量化、多模态推理等方向 [19] - 数据集采用公开资源或垂类自定义数据 [17] - 硬件要求最低2张4090显卡,建议4张或租赁云服务器 [15] 学术支持与成果预期 - 导师提供定制化研究idea,目标SCI 1~4区或CCF A/B/C级别论文 [22] - 课程交付价值包括科研流程、写作方法、论文初稿 [22] - 答疑周期为6个月,确保后续研究支持 [22]