Workflow
VLA爆发!从美国RT-2到中国FiS-VLA,机器人的终极进化
具身智能之心·2025-07-09 22:38

具身智能与VLA模型发展 - 2025年全球具身智能赛道爆火,视觉语言动作模型(VLA)成为核心驱动力,从美国RT-2到中国FiS-VLA实现技术快速迭代 [4][6][7] - 谷歌DeepMind、Figure AI等硅谷领军企业加速布局VLA,谷歌发布首个离线VLA模型实现机器人精准离线操控 [8][9] - 中国智平方联合高校推出FiS-VLA模型,通过快慢双系统架构解决机器人操控效率与推理能力矛盾问题 [10][12] 技术演进关键节点 - 谷歌RT-1(2022年)开创机器人Transformer模型,首次实现"预训练+微调"范式,完成多步骤任务如"把可乐放入冰箱" [23][25][27] - 微软ChatGPT for Robotics(2023年)实现零样本任务规划,但暴露语言模型在动作控制上的局限 [31][32][34] - 谷歌RT-2(2023年7月)确立VLA范式,将动作离散化为文本token联合训练,在未见任务上成功率超50% [38][39][40][46] 中国技术创新突破 - 智平方推出RoboMamba模型,引入Mamba架构使推理速度达主流模型3倍,仅微调0.1%参数实现SE(3)位姿预测 [45][47][50][52] - HybridVLA模型融合自回归与扩散架构,在仿真任务成功率提升8%,真实环境提升11% [74][77][79] - FiS-VLA实现21.9Hz控制频率,是CogACT的2倍以上,在RLBench任务平均成功率69%领先基线方法 [105][114][115] 国际竞争格局 - 开源模型OpenVLA以7亿参数超越55亿参数的RT-2-X,29种操作任务成功率高出16.5% [54][57][58] - Figure AI发布Helix双系统模型,系统1(80M参数)与系统2(VLM主干)实现7-9Hz工作频率 [88][89][93][96] - 英伟达开源GROOT N1人形机器人基础模型,融合互联网与机器人数据实现广义推理 [97][98][101] 行业应用前景 - VLA技术推动机器人从实验室走向工业落地,已在人形机器人和智能制造领域部署应用 [123][124] - π系列模型实现开放世界泛化,在未见家庭场景零样本完成清洁任务,标志技术具备大规模推广能力 [63][69][70] - 技术演进形成"自回归到扩散到混合"与"非端到端到快慢耦合"双路径,推动机器人向通用能力进化 [122]