端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 自UniAD获得CVPR Best Paper后 国内智驾军备竞赛加速 理想汽车2024年宣布E2E+VLM双系统架构量产 [2] - 端到端技术通过传感器数据直接输出规划或控制信息 避免了模块化方法的误差累积 BEV感知和UniAD统一了感知与规划任务 推动技术跃迁 [2] - 当前技术栈涉及多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂且知识碎片化 [3] 技术课程核心内容 - 课程直击学习痛点 采用Just-in-Time Learning理念 通过案例快速掌握核心技术栈 [4] - 构建端到端自动驾驶研究框架 帮助学员分类论文 提取创新点 形成研究体系 [5] - 理论结合实践 涵盖PLUTO(二段式) UniAD(一段式感知) OccWorld(世界模型) DiffusionDrive(扩散模型) VLA(大模型)等主流技术 [6] 课程大纲与关键技术 - 第一章概述端到端发展历史 模块化到端到端的演变 一段式 二段式 VLA范式优缺点及工业界应用 [8] - 第二章重点讲解背景知识 包括VLA涉及的大语言模型 扩散模型 强化学习 以及BEV感知 为未来两年高频面试技术 [8][9] - 第三章聚焦二段式端到端 分析PLUTO CarPlanner Plan-R1等工作的优缺点 [9] - 第四章深入一段式端到端与VLA 涵盖UniAD PARA-Drive(感知) Drive-OccWorld OccLLaMA(世界模型) DiffusionDrive DiffE2E(扩散模型) ORION OpenDriveVLA ReCogDrive(VLA)等前沿工作 [10] - 第五章大作业为RLHF微调实战 涉及预训练和强化学习模块搭建 可迁移至VLA算法 [12] 行业趋势与人才需求 - VLM/VLA成为招聘刚需 3-5年经验可冲击百万年薪 技术上限高且工业界需求旺盛 [2][10] - 扩散模型与VLA结合成为热点 多模轨迹预测适应自动驾驶不确定性环境 多家公司尝试落地 [10] - 主机厂加速布局端到端算法预研和量产 如小米ORION等开源项目推动技术发展 [10][13]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心·2025-07-10 20:40