Workflow
生成式 AI 的发展方向,应当是 Chat 还是 Agent?
自动驾驶之心·2025-07-11 19:23

Chat与Agent的区别 - Chat是主要由"大脑和嘴"构成的智能体,专注于信息处理和语言交流,如ChatGPT这样的系统,能理解查询并给出连贯回答但不直接执行任务 [1] - Agent是具有"手、脚"的智能体,能进行思考、决策并执行具体任务 [2] - Chat强调"说",Agent强调"做" [3] 技术发展趋势 - 人类对"让机器替人干活"的需求持续存在,OpenAI通过plugin、Function Calling、Assistant API等动作推动LLM从纯对话向任务执行扩展 [4] - 智能音箱发展路径类似:从基础语音功能(如播放音乐)逐步扩展到支付互通、智能家居控制、儿童教育等场景,成为智能生态核心 [4][5] - AI+RPA技术推动智能客服向数字员工进化,体现AI从单一对话到"说做结合"的融合趋势 [5] - 未来生成式AI将融合Chat和Agent特点,形成兼具高质量对话与复杂任务执行能力的自动化系统 [6] AI Agent的技术变革 - 颠覆传统软件开发模式:从预先定义逻辑转向由LLM自主支配运行,实现运行时学习与调优 [7] - 核心模块包括Memory(记忆)、Tools(外部工具)、Planning(计划)和Action(行动) [7] - 当前学习路径分为OpenAI技术路线和开源技术路线,建议技术人员选择一条深入实践 [9] 典型AI Agent项目案例 - AutoGPT:可拆解用户目标为子任务,通过搜索、脚本执行等方式自主完成任务 [11][12] - JARVIS:采用"模型选择"机制,调用Huggingface专家模型处理多模态任务 [13][15] - MetaGPT:模拟软件公司结构,分配产品经理、工程师等角色协作完成编码任务 [16] 开发者生态与机会 - 工具/平台成熟为个体开发者提供新舞台,使AI原生应用开发门槛降低 [16] - 自动驾驶领域已形成近4000人社区,覆盖300+企业与科研机构,涉及30+技术栈(如BEV感知、SLAM、轨迹预测等) [19][21]