物理模拟器与世界模型驱动的机器人具身智能综述
具身智能之心·2025-07-15 21:49
具身智能技术综述 - 具身智能成为机器人与人工智能领域的前沿课题,关注智能体在物理世界中的感知、推理与行动能力[3] - 物理模拟器与世界模型是两大关键技术:前者提供高保真虚拟训练环境,后者实现内部环境预测与策略规划[3][5] - 论文整合25张图、6张表格、超400篇文献,系统梳理技术协同路径[3] 技术框架与能力分级 - 提出五级机器人能力标准(IR-L0至IR-L4):从基础执行到完全自主决策[8][15] - 物理模拟器核心指标包括物理引擎精度(ODE/DART/MuJoCo等)、渲染能力(OpenGL/Vulkan)及传感器支持[13][18][19] - 世界模型架构涵盖预测网络、生成式模型及多任务复合模型,应用于自动驾驶与关节机器人[14] 主流技术平台对比 - 物理仿真平台横评:MuJoCo在刚体动力学领先,Isaac系列支持GPU加速物理(PhysX/FleX),CoppeliaSim兼容多引擎[18] - 渲染能力差异显著:Isaac Sim/Isaac Lab采用Omniverse RTX实现光线追踪,Webots/Gazebo依赖基础OpenGL[19] - 自动驾驶领域世界模型密集涌现,如GAIA-1、DriveDreamer等基于扩散模型与Transformer架构[20] 应用场景与突破方向 - 运动控制技术从模型预测控制(MPC)演进至深度强化学习端到端策略[15] - 操作控制结合VLM/LLM实现视觉-语言-动作一体化,双臂协作精度提升[15] - 交互能力突破包括社会嵌入认知与物理安全机制[15]