Workflow
ICCV2025 | One image is all you need,多模态指令数据合成,你只管给图,剩下的交给Oasis
机器之心·2025-07-18 11:14

多模态指令数据合成方法Oasis - 核心观点:提出一种新型多模态指令数据合成方法Oasis,仅需用户提供图片即可自动完成指令合成、质量控制和回复生成,显著降低人工成本并提升数据多样性[1][6][21] - 方法优势:打破依赖预设文本提示词的传统模式,利用图像输入诱导MLLM自主生成多样化指令,完全无需人工前置文本提示[6][14][15] - 质量控制:设计四维度筛选标准(可解性/清晰度/幻觉程度/无意义性),高质量指令接受率为50.9%[19][49][50] 技术流程 - 三步法:构造钩子提示词诱导自回归采样→LLM分类保留指令型数据→质量控制与回复生成[11][16][18] - 分类机制:采样结果分为指令型(保留)和描述型(舍弃),通过率为49.9%[15][16][46] - 垂域合成:基于OCR相关图片合成70k垂域数据,在OCR任务benchmark上提升显著[43] 数据特性 - 规模与扩展性:基于Cambrian-10M图片合成500k训练数据(Oasis-500k),数据量可线性增长[21] - 语言多样性:覆盖英文(78.52%)、中文(18.66%)及多种小语种[27] - 任务多样性:指令平均长度76.8(LLaVA-NeXT为55.03),动词-名词组合覆盖更广[24][28][33] 性能验证 - 基准测试:在14个benchmark上平均提升Vicuna1.5/Qwen2.5/Llama3模型性能3.1%/1.8%/3.2%[36][38] - 增量实验:500k Oasis数据使LLaVA-100k模型性能提升5.2%,300k→500k阶段增益达4.0%[40][41] - 消融结果:指令质量控制使模型整体性能提升1%,DocVQA/InfoVQA任务提升超7%[45][50] 开源生态 - 代码库MM-INF:集成Oasis及常用多模态数据合成方法,支持模块化数据合成流程[2][52] - 资源开放:提供论文、代码及数据集链接,涵盖Qwen2-VL等模型实现细节[4][12][52]