端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 [1] - 二段式端到端以PLUTO为代表,专注于模型实现自车规划 [1] - 一段式端到端包括UniAD(基于感知)、OccWorld(基于世界模型)、DiffusionDrive(基于扩散模型)等不同流派 [1] - 基于VLM的方法推动自动驾驶VLA方向,开启大模型时代下的端到端研究 [1] - 传统BEV感知、车道线、Occupancy等研究方向在顶会中逐渐减少 [1] 学术界与工业界研究方向差异 - 工业界仍在优化传统感知、规划方案 [1] - 学术界转向大模型与VLA方向,为新兴研究领域 [1] - 新领域对初学者门槛较高,仅少数科研强者可独立产出 [1] - 论文研究方向建议优先考虑大模型、VLA领域 [1] VLA科研论文辅导课题 - 课程目标包括系统掌握VLA理论体系、提升动手能力、论文写作与投稿方法 [6] - 招生对象涵盖本硕博学生、留学申请者、自动驾驶从业者等 [7] - 课程收获包括经典与前沿论文分析、创新点挖掘、实验方法、写作投稿技巧 [8] - 硬件要求最低4张4090显卡,建议8张或租赁云服务器 [11] - 基础要求包括Python、PyTorch、Linux开发能力 [11] 课程结构与支持 - 12周在线科研+2周论文指导+10周维护期 [10] - 提供导师定制idea、baseline代码、数据集支持 [10][14][15] - 采用"2+1"多师制,含主导师与班主任全程跟踪 [13] - 学习阶段包括基础测试、个性化教学、学术回顾等 [13] - 产出包括论文初稿、结业证书、推荐信(优秀学员) [13] 学习资源与安排 - 提供开源代码库(UniAD、DiffusionDrive、OpenDriveVLA等) [14] - 必读论文涵盖VLA模型综述、Senna、SimLingo等前沿研究 [16] - 数据集采用nuScenes、Waymo、Argoverse等公开资源 [15] - 学习要求包括课前阅读、按时作业、全勤参与、学术诚信 [13]
传统的感知被嫌弃,VLA逐渐成为新秀......
自动驾驶之心·2025-07-25 16:17