Workflow
从端到端到VLA,自动驾驶量产开始往这个方向发展...
自动驾驶之心·2025-07-26 21:30

端到端自动驾驶行业现状 - 端到端自动驾驶已成为国内主流新能源主机厂抢占的技术高地,E2E+VLM双系统架构去年取得成功后,VLA概念在2024年上半年掀起新一轮量产方案迭代[2] - 行业对端到端技术人才需求旺盛,3-5年经验的VLM/VLA岗位年薪高达百万,月薪达70K[2] - 学术界和工业界聚焦端到端技术,但存在技术流派分化问题,包括UniAD、PLUTO、OccWorld、DiffusionDrive等多种算法方案[2][7] 端到端技术发展特点 - 技术演进快速,2023年的工业级端到端算法方案已不适应2024年环境,需掌握多模态大模型、BEV感知、强化学习等跨领域知识[3] - 技术栈呈现多元化发展,包括基于感知的一段式(UniAD)、基于世界模型的一段式(OccWorld)、基于扩散模型的一段式(DiffusionDrive)以及VLA方向[7][11] - 学习门槛较高,存在论文数量繁多(年新增数百篇)、知识碎片化、缺乏高质量文档等挑战[3] 端到端课程核心内容 - 课程覆盖五大技术模块:端到端算法介绍、背景知识、二段式端到端、一段式端到端与VLA、RLHF微调实战[9][10][11][13] - 重点技术包括:PLUTO二段式架构(CVPR'25 CarPlanner)、UniAD感知方案(CVPR'24 PARA-Drive)、世界模型(AAAI'25 Drive-OccWorld)、扩散模型(DiffE2E)、VLA(小米ORION)[7][10][11] - 实战环节包含Diffusion Planner代码复现和ORION开源模块应用,目标实现工业级算法落地[11][13] 行业技术趋势 - VLA成为端到端自动驾驶的"皇冠技术",小米ORION、慕尼黑工大OpenDriveVLA等方案显示大模型与自动驾驶的深度结合[11] - 扩散模型在轨迹预测领域取得突破,DiffusionDrive等方案实现多模轨迹输出,适应自动驾驶不确定性环境[7][11] - 世界模型技术应用扩展,Drive-OccWorld等方案同时支持场景生成、端到端控制和闭环仿真[11] 人才能力要求 - 需构建跨领域知识体系,包括视觉Transformer(CLIP/LLaVA)、BEV感知(3D检测/车道线/OCC)、扩散模型理论、VLM强化学习(RLHF/GRPO)[12] - 工程能力要求涵盖PyTorch框架、GPU计算(推荐RTX4090)、数学基础(概率论/线性代数)及算法复现能力[20] - 职业发展目标为1年经验端到端算法工程师水平,具备技术框架设计能力和项目落地经验[20]