Workflow
性能暴涨30%!港中文ReAL-AD:类人推理的端到端算法 (ICCV'25)
自动驾驶之心·2025-08-04 07:32

核心观点 - 上海科技大学与香港中文大学联合提出的ReAL-AD框架通过模拟人类"策略-战术-操作"三层级联推理机制,显著提升端到端自动驾驶的决策能力 [3] - 该框架引入视觉-语言模型(VLM)作为"副驾驶",将环境感知转化为结构化推理指令,实现从语义策略到可执行轨迹的分层解码 [3][5] - 在nuScenes和Bench2Drive数据集测试中,ReAL-AD的L2误差和碰撞率比基线模型降低超30%,驾驶评分提升11% [36][37][39] 技术架构 策略推理注入器 - 采用VLM生成驾驶策略文本(如"看到足球→可能有小孩→需减速避让"),通过预训练语言编码器映射至语义空间 [7][11] - 设计轻量级adaptor模块弥合语义空间与视觉特征的差距,使用余弦相似度损失确保策略语义与规划动态一致 [12] 战术推理整合器 - 将抽象策略转化为结构化指令,包括方向、紧急、车道、速度四类可执行命令 [15][17] - 通过正则表达式解析VLM输出,并采用类别特定编码器生成反应层(方向/紧急)与监管层(车道/速度)指令 [16][19] 分层轨迹解码器 - 第一层解码器基于反应级指令生成粗略运动模式(潜码z^ε),第二层融合监管级指令输出精细轨迹 [22][25] - 采用双潜变量流处理时间维度,粗粒度流预测宏观运动模式,细粒度流生成精确航点序列 [27] 性能表现 开环评估 - 在nuScenes数据集实现0.48米平均L2误差(行业基线0.72米)和0.15%碰撞率(基线0.22%) [36][38] - Bench2Drive数据集上达到0.84米L2误差,较VAD基线提升10.6% [39] 闭环评估 - 驾驶评分提升至41.17(基线39.42),成功率提高1.36个百分点 [39] - 使用Qwen-VL模型时保持0.87米L2误差,验证框架兼容性 [39] 技术创新 - 首创策略-战术双阶段指令生成机制,使VLM输出可直接指导轨迹规划 [14][19] - 分层变分解码器实现人类式"先直觉反应后精细调整"的决策过程,较传统MLP解码器降低7%轨迹误差 [25][41] - 复合损失函数整合策略语义对齐、轨迹编码监督和分层KL散度约束,优化端到端训练效果 [29][31][33]