核心观点 - Qwen团队最新发布两款4B端侧模型Qwen3-4B-Instruct-2507和Qwen3-4B-Thinking-2507,在性能上实现显著突破,尤其在小模型尺寸下超越部分大模型表现 [2][3][5][7] - 两款模型分别针对通用任务和专家级推理任务优化,支持256K长上下文并具备端侧部署优势 [7][8][16][17][24] - Qwen3-4B-Thinking-2507在AIME25数学测评中得分81.3,超越Gemini 2.5 Pro和Claude 4 Opus [4][5][23] 模型性能突破 Qwen3-4B-Instruct-2507 - 通用能力超越闭源模型GPT-4.1-nano,与30B MoE模型Qwen3-30B-A3B性能接近但参数量仅其1/7.5 [13][14][15] - 关键指标:MMLU-Redux得分84.2(vs GPT-4.1-nano 80.2),GPQA得分62.0(vs 50.3),LiveBench 20241125得分63.0(vs 41.5) [18] - 增强多语言覆盖和长文本理解能力,支持扩展至1M上下文 [17] Qwen3-4B-Thinking-2507 - 专攻复杂推理任务,AIME25得分81.3超越前代65.6分及Qwen3-30B-A3B的70.9分 [23][25] - 推理性能提升显著:HMMT25得分55.5(vs 前代42.1),ZebraLogic得分80.2(vs 35.2) [18][25] - 在Agent任务中全面碾压前代,如TAU1-Retail得分66.1(vs 33.9),TAU2-Airline得分58.0(vs 28.0) [25] 技术特性与行业影响 - 端侧适配性:支持树莓派等设备,提供GGUF量化版本和llama.cpp部署方案 [2][8][27][28] - 模型效率:4B密集模型性能接近30B MoE模型,重新定义小模型能力边界 [11][15][23] - 开源策略:通过抱抱脸和魔搭社区提供模型下载,与OpenAI同期开源形成竞争 [26][34][35] 开发者支持 - 部署工具链完整:支持Ollama、LMStudio、MLX-LM等主流框架 [27] - 优化建议:针对内存限制设备推荐缩短上下文长度,复杂推理任务建议使用>131K词元 [28][29] - Prompt设计规范:提供数学题逐步推理和选择题JSON结构化回答模板 [31] 行业动态 - 发布时间点卡位OpenAI开源窗口,引发开发者社区高度关注 [34][35] - 性能对比:Qwen3-4B系列在多项基准测试中优于GPT-4.1-nano和Claude 4 Opus [18][25] - 市场期待:用户呼吁Qwen团队加速发布Qwen3-8B系列模型 [31][33]
Qwen紧追OpenAI开源4B端侧大模型,AIME25得分超越Claude 4 Opus
量子位·2025-08-07 08:56