理想i8与VLA司机大模型 - 理想i8成为首款搭载VLA司机大模型的理想车型 核心能力包括空间理解 思维能力 沟通与记忆能力以及行为能力 [2] - VLA能力提升体现在三方面 更懂语义(多模态输入) 更擅长推理(思维链) 更接近人类驾驶直觉 [2] - 行驶中可响应自然语言指令如"靠边停一下""往前走50米" 并能根据记忆设定路段速度 主动规避障碍 [5] VLA技术发展现状 - VLA是自动驾驶量产新里程碑 技术从E2E+VLM递进发展 行业多家公司投入研发 [7] - 技术栈涉及大语言模型 BEV感知 扩散模型 强化学习等多领域 转行门槛较高 [19] - 当前招聘需求旺盛 VLA算法专家岗位薪资达40-70K 量化部署工程师40-60K [15] 端到端自动驾驶课程体系 课程内容架构 - 第一章概述端到端发展历史 从模块化到一段式 二段式及VLA范式的演进 [26] - 第二章重点讲解大语言模型 BEV感知 扩散模型等背景知识 覆盖未来两年高频技术关键词 [26][33] - 第三章解析二段式端到端 包括PLUTO CARPLANNER(CVPR'25)等经典算法 [27] - 第四章深度剖析一段式端到端子领域 涵盖UniAD 世界模型 扩散模型及VLA前沿方案 [28][30][32][35] 教学特色 - 采用Just-in-Time Learning理念 通过案例快速掌握核心技术栈 [21] - 配套RLHF微调大作业 可迁移至VLA算法 提供ORION等实战项目 [35][37] - 课程目标使学员达到1年经验算法工程师水平 掌握BEV感知 多模态大模型等关键技术 [42] 行业技术趋势 - 世界模型应用广泛 涵盖场景生成 端到端驾驶及闭环仿真 成为近年热门方向 [30] - 扩散模型与VLM结合实现VLA 多模轨迹预测提升环境适应性 多家公司尝试落地 [32] - VLA技术上限高但难度大 小米ORION 慕尼黑工大OpenDriveVLA等方案推动量产进程 [35]
传统感知逐渐被嫌弃,VLA已经上车了?!