AI顶会模式出了问题? 「不发表,就出局」的恶性循环,正在压垮整个AI学界
机器之心·2025-08-13 12:49
AI学术会议现状与挑战 - AI顶会如NeurIPS、ICML和ICLR影响力扩大但面临可持续性问题,NeurIPS 2025因30000篇投稿和低质评审陷入争议[3][4] - 过去十年AI领域人均年发表量翻倍至4.5篇,预计2040年代将超每月一篇[7][22] - NeurIPS 2024差旅碳排放达8254吨CO2e,超温哥华全市日均排放量[7][23] - Reddit社区71%会议相关评论为负面,35%涉及心理健康问题[7][28] 传统会议模式的结构性问题 - 论文数量指数增长导致同行评审系统过载,研究周期快于会议安排使成果过时[16][18] - 教职员工人均贡献增速远超人力增长,对其他计算机子领域产生"虹吸效应"[19][22] - 场馆容量不足(如NeurIPS 2024限18000人)造成参与不平等,损害社区建设[31] 新型会议模式探索 - 社区联合型会议(CFC)提出三层架构:全球评审平台、区域展示中心、数字协作层[38][39][40] - CFC通过滚动评审减轻审稿压力,区域中心减少90%差旅排放,数字层保障知识传播[8][40] - 现行多会场模式(如NeurIPS 2025墨西哥分会场)未解决评审集中化与分层问题[34][37] 学术生态深层矛盾 - "不发表就出局"文化催生低质量论文,资深学者缺乏改革动力形成系统性僵局[11][13] - AI研究每7个月能力翻倍,与会议周期脱节导致46%成果展示时已过时[30] - 投稿接收量线性增长而拒稿量指数上升,加剧审稿负担与作者挫败感[30]