Workflow
理想汽车MoE+Sparse Attention高效结构解析
自动驾驶之心·2025-08-27 07:32

理想汽车智驾技术架构 - 公司采用"MoE + Sparse Attention"高效结构解决大模型部署时的推理效率问题,通过混合专家架构实现模型容量扩容而不显著增加推理负担[3] - MindGPT大语言模型经过重新设计与预训练,具备3D空间理解和推理能力,但参数量增加导致端侧部署可能出现效率低下问题[3] - 该技术方案针对英伟达Thor-U智驾芯片优化,确保在车载计算平台上的实际应用性能[3] 稀疏注意力机制技术细节 - 采用局部窗口(Local Attention)与跳跃连接(Strided Attention)组合结构,每个token关注附近窗口内token(如前后2个位置)以及步长为s的远端token[9][10] - 注意力矩阵呈现对角线局部连接与分布条纹状跳跃连接相结合的模式,保证token能快速传播到远端同时保留局部建模能力[10][15][16] - 通过构建稀疏注意力mask实现计算优化,在不修改Transformer主体结构前提下限制注意力机制复杂度,仅关注关键输入部分[6][12][14] 混合专家架构实现方案 - 使用8个专家网络(E1-E8),由Router动态选择激活部分专家而非全部,仅在需要时调用相关子模型[6][22] - 采用Top-k路由策略(通常k=2),通过Gate模块计算输入样本对各个专家的偏好程度并选择最优专家[24][32] - 支持分布式部署模式,通过all_to_all通信机制实现跨GPU的专家网络数据交换与负载均衡[34][37] 计算复杂度优化 - 稀疏注意力机制显著降低计算复杂度,相比标准全连接Self-Attention大幅减少计算量[17] - MoE架构通过激活部分专家网络实现计算资源动态分配,在不增加推理成本前提下扩大模型容量[22][25] - 采用专家并行(Expert Parallelism)技术,支持多GPU分布式训练与推理,提升系统整体效率[28][31]