核心观点 - 引入"先推理,后预测"策略,通过奖励驱动的意图推理器提升轨迹预测的可解释性和可靠性 [5][8][10] - 提出FiM模型,在Argoverse和nuScenes基准测试中实现极具竞争力的性能,部分指标超越最先进模型 [10][33][36] - 结合强化学习范式(MaxEnt IRL)和结构化解码器(Bi-Mamba),显著提高预测准确性和置信度 [8][9][10] 方法框架 - 采用编码器-解码器结构,包含以查询为中心的场景编码器、Mamba增强的解码器和奖励驱动的意图推理器 [14][16] - 通过QIRL框架将MaxEnt IRL与矢量化上下文结合,学习奖励分布并生成意图序列(GRT) [8][18] - 使用辅助的时空占用网格地图(OGM)预测头建模未来交互,增强特征融合 [9][18] - 分层DETR类解码器生成轨迹提议,并通过Bi-Mamba结构捕获序列依赖关系 [9][19][21] 实验性能 - 在Argoverse 1测试集上,FiM的MR6为0.1087,minFDE6为1.1199,Brier分数为0.5732,部分指标领先HiVT、Scene Transformer等模型 [32][33] - 在Argoverse 2验证集上,FiM变体的minFDE6为0.528–0.530,优于DeMo(0.543)和QCNet(0.551) [34][35] - 在nuScenes数据集上,FiM的minADE10为0.78,MR10为0.23,显著超越P2T、THOMAS等模型 [36] 技术贡献 - QIRL模块有效替代交叉注意力机制,在消融实验中brier-minFDE6从2.132降至1.602 [37][38] - OGM和细化模块分别将brier-minFDE6从1.670和1.801优化至1.602 [40] - Bi-Mamba结构相比单向Mamba降低brier-minFDE6从1.636至1.602,验证双向扫描机制优势 [41][42] - 最优Mamba层深度为6层,更深层可能导致性能下降 [43]
ICCV'25港科大“先推理,后预测”:引入奖励驱动的意图推理,让轨迹预测告别黑箱!
自动驾驶之心·2025-08-29 11:08