Workflow
清华崔鹏团队开源LimiX:首个结构化数据通用大模型,性能超越SOTA专用模型
机器之心·2025-08-30 09:18

由于专用模型难泛化、不通用,面对不同场景需要训练多个专用模型,成本高、效果差,且难以发挥数据要素聚集的乘数效应,严重制约了 AI 在工业场景的落地 路径。 结构化数据通用大模型(Large Data Model, LDM)则针对性解决这一痛点:不同于 LLM 聚焦文本,LDM 融合结构因果推断与预训练大模型技术,既能捕捉结构 化数据的内在关联,又具备强泛化能力,可跨行业适配多类任务。 「极数」大模型可以支持分类、回归、高维表征抽取、因果推断等多达 10 类任务,在工业时序预测、异常数据监测、材料性能预测等场景中,性能达到甚至超越 最优专用模型,实现单一模型适配多场景、多任务的通用性突破,为人工智能赋能工业提供了 One-For-All 解决方案。 2025 年 8 月 29 日,由清华大学计算机系崔鹏教授团队联合稳准智能共同研发的结构化数据通用大模型「极数」(LimiX)正式宣布开源。 此次发布标志着我国在结构化数据智能处理领域的技术突破与生态开放迈出关键一步,将显著降低千行百业应用结构化数据 AI 技术的门槛,特别是在结构化数据 占主导的泛工业领域,「极数」大模型将助力 AI 深度融入工业生产全流程,破解工 ...