AI行业发展趋势 - AI进入高速发展阶段 核心衡量指标从Scaling Law转变为Token消耗量 7月Token消耗量较6月增长20%以上[3] - 行业预期发生变化 从追求AGI转向优化现有智能的可用性和易用性[4] - AI已超越应用阶段 进入产业化和工业化新阶段[6] 模型发展特点 - GPT-5代表重要转折点 通过整合分散的模型能力和前端界面提升可用性而非追求更聪明[5] - 模型智能评估重要性降低 OpenAI和DeepMind模型已获得IMO金银牌[18] - 模型进入瓶颈期 智能提升主要来自各环节增量优化 仍有几十个百分点提升空间[22] 基础设施优化 - Infra优化分为四层:模型与GPU间优化 模型与应用间推理加速 Agentic Infra优化 context层Infra优化[25][26][27] - 推理加速技术壁垒不高 部分开源 毛利空间存在争议[25] - 英伟达需求来自训练和推理两部分 Token消耗增长推动推理需求持续上升[29] 公司战略演变 - 模型 应用和Infra公司边界变得模糊 出现端到端打通全链条的趋势[13][14] - OpenAI招募创业公司创始人 Google加快应用端发力 Manus开展技术工作 Cursor开始训练自有模型[13] - 公司分工新共识:模型公司提升Token价值 Infra公司优化使用效率 应用公司换取数据反馈[11] 投资市场表现 - 英伟达股价上涨核心驱动是Token消耗量持续增长[29] - ASIC厂商和AMD股价表现亮眼 反映市场对降低成本方案的追求[30][31] - 美国AI估值存在泡沫 但发展前景依然被看好[48] 应用场景发展 - RL范式推动Coding 数学等可验证效果场景发展[37] - 垂类公司找到PMF Harvey AI在法律领域实现高ARR 医疗金融保险领域出现成功团队[37] - 视频Token消耗增速远高于文字 但真正多模态原生应用尚未出现[88][89] 二级市场差异 - 美国市场受AI发展预期主导 AI对整体景气度影响占三分之二以上[45] - 中国市场受多重因素影响 包括居民存款 投资意愿 风险偏好和制造业周期[46] - 腾讯成为国内AI板块代表性标的 因AI努力程度和战略高度获得市场认可[56] 一级市场特点 - 美国模型公司估值达到上百亿美元 出现全明星团队加持现象[79] - 第一梯队与第二梯队公司估值差距创历史纪录[82] - 国内一级市场两极分化严重 头部公司可能获得十倍资金[84] 新兴公司关注 - Reddit因社区数据质量高被ChatGPT高频使用 类似美国版知乎+小红书+B站[76] - ServiceNow通过Workflow梳理和软件交付获得500强客户 增长速度加快[76] - Figma凭借协作场景优势和中生代公司地位 有望将AI融入协作场景[77]
硅谷 AI 大转弯与二级市场的牛市|42章经
42章经·2025-08-31 20:35