产品发布与核心特性 - 华为发布DeepDiver-V2原生多智能体系统 采用团队作战模式 包括一个Planner负责任务分解和进度管理 多个专业Executor并行处理子任务 通过共享文件系统交换信息 [1] - 系统基于多智能体形态训练 具备更强的角色扮演和协同推理能力 能够生成数万字的高质量深度研究报告 [2] - 该系统专攻AI深度搜索和长文调研报告生成 目前已开源 [3] 性能表现与基准测试 - 在WebPuzzle-Writing基准测试中 DeepDiver-V2生成报告平均长度达24.6K tokens 是OpenAI o3 DeepResearch(10.6K tokens)的两倍多 [4] - DeepDiver-V2-38B在BrowseComp-zh测试中达到34.6分 超越WebSailor-72B(30.1分)和WebSailor-32B(25.5分) [5] - DeepDiver-V2-38B在BrowseComp-en测试中达到13.4分 为同规模开源模型中最高 超过WebSailor-72B(12.0分) [5] - 在自动评测中 DeepDiver-V2效果与主流agent产品相当 Content Diversity指标表现优异 [4] 系统架构创新 - 采用以Planner为中心的多智能体系统架构 协调多个Executor 取代V1版本的单模型超长上下文处理模式 [7] - Planner进行自适应复杂度评估 构建任务树分解复杂问题 并采用竞争赛马机制提高结果可靠性 [8][9] - 智能体通过共享文件系统交换精炼任务摘要和文件元数据 而非完整上下文 实现可扩展通信和并行执行 [11] - 系统包含专业化Executor:Information Seeker负责信息收集与验证 Writer负责长文本生成与章节构建 [12] 训练方法与技术支撑 - 采用Planner-centric分配机制解决多智能体训练中的责任归属问题 [13] - 训练流程包括冷启动监督微调 拒绝采样微调(RFT)和在线RFT 使用动态轨迹缓存批处理策略 [15][16] - 训练完全使用Atlas 800I A2集群 依托1000+ NPU组成的大规模计算集群 通过华为高速缓存一致性系统(HCCS)互联 [17] - 开发专门强化学习框架 包括Agent Factory代码库和Trajectory-wise过滤机制 [17][18] 实验发现与性能分析 - 系统性能对Executor能力极其敏感 但对Planner要求相对宽松 7B Planner已能胜任大部分协调工作 [19][21] - 38B Information Seeker单独使用时在BrowseComp-zh得分26.3 超越WebSailor-32B(25.5分) [23] - 将7B Executor升级为38B后 BrowseComp-zh分数增加9分(18.3→27.3) 而升级Planner仅提升6.3分(18.3→24.6) [25] - 在长文本写作任务中 升级Writer带来的提升(5.51→5.80)远超升级Planner(5.51→5.56) [25] - 多智能体训练使子智能体在处理扩展任务集时更加鲁棒 具备独当一面的能力 [26] 应用前景与行业影响 - 从单一模型到多智能体系统的转变为解决复杂现实问题开辟道路 [27] - 未来将在企业调研 科学文献综述 专业数据分析等专业领域发挥巨大作用 [27]
DeepDiver-V2来了,华为最新开源原生多智能体系统,“团战”深度研究效果惊人
量子位·2025-09-11 18:19