VLA模型技术价值 - VLA模型整合视觉信息、语言指令和行动决策,显著提升机器人对复杂环境的理解和适应能力 [1] - 该范式打破单任务训练局限,推动机器人向通用化、场景泛化方向发展 [1] - 能够实现从视觉输入和语言指令到机器人动作的端到端映射,应用于复杂任务规划和执行 [8] 产业应用与商业化进展 - 广泛应用于制造业、物流和家庭服务等领域,支持机械臂、四足机器人和人形机器人等多种平台 [3] - 国内外具身智能领域处于蓬勃发展阶段,Unitree、智元、星海图、银河通用、逐际动力等团队从实验室走向商业化 [5] - 华为、京东、腾讯等科技巨头与Tesla、Figure AI等国际公司共同推动领域发展 [5] 前沿研究项目 - 推动多个前沿项目发展包括pi0、RT-2、OpenVLA、QUAR-VLA和HumanVLA [3] - RT-2、OpenVLA和PI0等模型实现从视觉输入和语言指令到动作的端到端映射 [8] - PaLM-E、RT-X等模型通过多模态预训练和微调策略增强机器人环境适应性和鲁棒性 [9] 技术演进路径 - 技术演进涵盖从早期抓取位姿检测到行为克隆,再到近期Diffusion Policy和多模态基础模型 [8] - 关注多模态感知融合、触觉反馈整合、基于物理的推理以及社会互动能力等前沿发展方向 [9] - 研究如何将大型语言模型推理能力与机器人控制系统结合,实现高级任务描述到低级运动规划的转换 [9] 核心研究挑战 - 面临跨域泛化、长期规划与世界模型构建等核心挑战 [9] - 未解决难点包括长期记忆、VLA+RL原子技能库构建、动作解码问题、多模态思维链等多个前沿方向 [15] - 突破"看得见但摸不着"、"只关注当下不能预测未来"等局限性,向通用机器人智能迈进 [9]
卷VLA,提供一些参考方向......
具身智能之心·2025-09-15 18:00