Workflow
但我还是想说:建议个人和小团队不要碰大模型训练!
自动驾驶之心·2025-09-21 00:03

大模型应用策略 - 对于小规模团队,部署开源大语言模型结合检索增强生成技术已能满足99%的需求,在触及开源模型性能边界前不建议进行模型微调[2] - 若开源模型在特定垂直领域效果不佳,应优先尝试检索增强生成技术和上下文学习等低成本方案,而非直接进行模型微调[3] - 建议将最复杂的任务分配给o1系列模型,将需要较高智能的任务分配给4o等第一梯队模型[3] - 除付费模型外,可考虑采用DeepSeek、豆包、Qwen等国产开源大模型[4] - 基础模型能力的每次重大提升都如同一次技术版本更新,从业者需敏锐识别现有模型能力与业务需求的差异[6] - 应避免在低收益赛道进行无意义投入,采取错位竞争和降维打击策略更为有效[7] 核心技术趋势与人才需求 - 检索增强生成和智能体技术是当前大模型领域最具代表性的技术,企业对掌握这些技能的人才需求高涨[8] - 行业正积极构建技术社区,汇集来自上海交通大学、清华大学、北京大学、上海人工智能实验室、香港科技大学、香港大学等顶尖高校及阿里千问、美团LongCat、深度求索DeepSeek、字节豆包、百度文心一言、月之暗面Kimi等头部企业的专家[10][43] 技术社区资源体系 - 社区提供集视频、图文、学习路线、问答、求职交流为一体的综合型大模型技术平台[8][10] - 技术学习路线图全面覆盖检索增强生成、智能体、多模态大模型三大方向,包括Graph RAG、知识导向RAG、多模态RAG、推理RAG、智能体强化学习、多模态智能体、多智能体等细分领域[10] - 社区已邀请40余位学术界和工业界专家,计划不定期举办行业大佬直播分享活动[41][43] - 提供大模型相关工作岗位推荐和行业机会挖掘服务,助力职业发展[13][44]