
生成式AI行业动态 - OpenAI被曝在用户不知情情况下将GPT-4和GPT-5等模型路由至低算力敏感模型"gpt-5-chat-safety"和"gpt-5-a-t-mini" 当系统判定内容涉及敏感话题或情绪表达时自动触发切换 [1] - OpenAI回应称切换为临时性安全路由系统测试 但未经同意的模型更改行为引发用户权益质疑 [1] - 腾讯发布工业级原生多模态生图模型混元图像3.0 参数规模80B 是目前测评效果最好且参数量最大的开源生图模型 [2] - 混元图像3.0基于50亿级图文对和6T语料训练 具备千字级复杂语义解析能力 支持长文本生成和小文字处理 [2] - 快手推出KAT-Dev-32B开源和KAT-Coder闭源两款Agentic Coding大模型 在SWE-Bench Verified上分别达到62.4%和73.4%解决率 [3] - 快手开发基于熵的树剪枝技术和强化学习训练框架SeamlessFlow 模型经训练后涌现出对话轮次减少和多工具并行调用新能力 [3] AI教育应用进展 - 好未来提出AI教师L1-L5分级理论 学而思"小思AI一对一"对标L3级别 能实现实时观察学生解题步骤并提供针对性引导 [4][5] - L3级AI教师需配备多模态传感器和专用硬件 形成"批改-讲题-推荐"数据飞轮 数学解题正确率达98.1% [5] - 好未来自研"九章"大模型结合20多年教研内容 在线下培训、在家学习和进校学习三大场景实现统一学情画像 [5] 前沿科技战略布局 - Meta计划投入数十亿美元研发人形机器人"Metabot" 战略地位与AR项目同级 聚焦软件开发而非硬件制造 [6] - Meta拟采用软件平台授权模式 与机器人制造商合作建立行业通用标准 新成立超级智能人工智能实验室构建物理"世界模型" [6] - 谷歌DeepMind视频模型Veo 3涌现四层能力:感知经典视觉任务、建模物理定律、操纵图像编辑、推理视觉问题 [10] - Veo 3通过帧链(CoF)技术实现跨时空推理 在七个代表性任务上显著超越Veo 2 可能成为视觉领域的GPT-3时刻 [10] 技术理论与方法创新 - 图灵奖得主Richard Sutton认为大语言模型是错误起点 强调真正智能需通过经验学习实现 而非对人类行为的模仿 [7] - 陈丹琦团队提出RLMT方法 将显式思维链推理融入通用聊天模型 在WildBench等基准测试中表现优异 [8][9] - RLMT要求模型生成推理轨迹后再输出最终答案 通过奖励模型评分 使推理风格从线性规划转变为迭代式思考 [8][9] 行业战略与市场展望 - 英伟达从芯片公司转型为AI基础设施合作伙伴 通过极端协同设计构建AI工厂生态系统 竞争护城河基于总拥有成本优势 [11] - AI推理将迎来十亿倍增长 预训练、后训练和推理三大扩展定律驱动万亿级市场 年度AI基础设施资本支出预计达5万亿美元 [11] - 主权AI时代各国需建立独立AI基础设施 主张通过技术出口最大化影响力而非脱钩 保持美国梦品牌吸引全球人才 [11]