Agentic AI核心概念与方法论 - Agentic AI通过多步骤任务分解、反思、执行与优化的循环工作流显著超越传统端到端Agent的性能表现[5][6][74] - 核心理念是让大语言模型以多步推理与分阶段执行的方式工作而非一次性生成结果这与人类解决复杂问题的方式高度契合[9][14] - 通过系统化的工作流设计甚至可以让GPT-3.5在编程任务中轻松超越GPT-4的性能表现[3][75] Agentic工作流四大核心设计模式 - 反思模式:让大模型检视自身输出并思考改进可通过双模型协作、量化评分机制或引入外部反馈(如参考答案)来提升输出质量[18][21][24][27] - 工具调用模式:由大语言模型自主决定调用外部功能(如网页搜索、编写代码)传统方式依赖开发者手动实现而MCP等统一协议将其标准化极大提升效率[28][29][38][43] - 规划模式:使大模型能根据不同请求灵活调整工具序列执行顺序通过将步骤转化为JSON或代码形式实现任务离散化从而优化性能与资源使用[45][46][47] - 多智能体协作模式:构建多个具备不同专长的智能体通过结构化分工协作(类似企业组织架构)提升复杂任务的处理效率与质量并可实现智能体间的嵌套调用[51][52] Agentic系统构建与优化流程 - 构建流程遵循"采样-评估-改进"的闭环迭代:先搭建工作流收集输出然后进行端到端或组件级评估定位错误最后针对性优化参数、工具或提示词[55][58][59] - 错误分析是关键通过追踪中间执行轨迹定位薄弱环节(如工具调用或识别模块问题)组件级评估能更快速精准地指导系统改进[61][63][64][67] - 模型选择与优化需多尝试不同模型参考他人提示词设计并将模型置于工作流中观察各步骤表现以持续提升系统可靠性[68][69][70] Agentic AI的行业意义与发展前景 - Agentic被定义为描述系统自主性程度的形容词而非二元分类这为开发者提供了更连续、准确的能力评估框架[72] - 与传统端到端Agent相比Agentic AI通过组件拆分和逐步优化使每个环节可迭代改进为开发者提供了可落地的系统优化路径而非仅依赖模型自身能力提升[76][77][78] - 除成熟代码Agent外基于步骤的Agentic AI在复杂多步骤工作流领域仍有广阔发展空间为行业探索更智能、可控的AI系统提供方法论支持[79][80]
吴恩达Agentic AI新课:手把手教你搭建Agent工作流,GPT-3.5反杀GPT-4就顺手的事
量子位·2025-10-12 12:07