文章核心观点 - 端到端自动驾驶现有方案存在忽略场景动态演化和忽视车辆行为对环境影响两大问题 [1][5] - SeerDrive提出轨迹规划与场景演化的双向建模范式,通过预测未来BEV表示捕捉场景动态,并让规划结果反馈给场景预测优化,形成闭环迭代 [3][4] - 该方法在NAVSIM和nuScenes数据集上达到SOTA性能,PDMS分数达88.9,超越Hydra-NeXt等现有方法 [23][24] SeerDrive设计原理 - 整体pipeline包含特征编码、未来BEV世界建模、未来感知规划、迭代优化四大模块 [4] - 核心是通过"预测未来场景→指导规划→反馈优化场景"的闭环实现双向交互 [4] - 采用解耦策略让当前与未来场景分别指导规划,再通过运动感知层归一化融合结果 [15] 技术实现细节 - 特征编码将多模态传感器输入和车辆自身状态编码为结构化特征,生成当前场景BEV特征图 [7][8] - 未来BEV世界建模基于当前BEV和ego特征预测未来场景演化,生成未来BEV特征而非复杂图像 [10][11] - 未来感知规划采用解耦策略分别利用当前感知与未来场景预判,避免表示混淆 [14][15] - 引入闭环迭代优化强化轨迹规划与场景演化的双向依赖,实验验证迭代2次时性能与效率最优 [16][17][18] 实验验证结果 - NAVSIM测试集上PDMS分数达88.9,超越Hydra-NeXt(88.6)、WoTE(88.3)等方法 [23] - 采用V2-99骨干网络时PDMS进一步提升至90.7,超过GoalFlow的90.3且计算成本更低 [23] - nuScenes验证集平均L2位移误差为0.43m,平均碰撞率为0.06%,显著优于SparseDrive等方法 [24] - 消融实验表明去掉未来感知规划或迭代优化均导致PDMS下降,验证双向建模和迭代优化的关键作用 [26][27] 行业技术对比 - 与UniAD、VADv2等方法仅优化规划过程不同,SeerDrive建模场景演化与规划的双向依赖 [37] - 与世界模型DriveDreamer等生成高保真图像相比,SeerDrive采用BEV表示更轻量且适配规划需求 [44] - 与WoTE仅用世界模型从候选轨迹中选最优不同,SeerDrive将未来BEV作为规划的特征级输入实现深度交互 [44]
复旦SeerDrive:一种轨迹规划和场景演化的双向建模端到端框架
自动驾驶之心·2025-10-15 07:33